Koszul complexes, harmonic oscillators, and the Todd class
Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 159-256

Voir la notice de l'article provenant de la source American Mathematical Society

In this paper, we construct secondary characteristic classes associated with a short exact sequence of holomorphic Hermitian vector bundles. These secondary invariants are generalized analytic torsion forms associated with a family of elliptic operators. They are calculated in terms of Bott-Chern forms and of a certain complicated characteristic class. In a joint calculation with C. Soulé, we relate this characteristic class to the arithmetic Todd genus of Gillet and Soulé.
@article{10_1090_S0894_0347_1990_1017783_4,
     author = {Bismut, Jean-Michel},
     title = {Koszul complexes, harmonic oscillators, and the {Todd} class},
     journal = {Journal of the American Mathematical Society},
     pages = {159--256},
     publisher = {mathdoc},
     volume = {03},
     number = {1},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1017783-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1017783-4/}
}
TY  - JOUR
AU  - Bismut, Jean-Michel
TI  - Koszul complexes, harmonic oscillators, and the Todd class
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 159
EP  - 256
VL  - 03
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1017783-4/
DO  - 10.1090/S0894-0347-1990-1017783-4
ID  - 10_1090_S0894_0347_1990_1017783_4
ER  - 
%0 Journal Article
%A Bismut, Jean-Michel
%T Koszul complexes, harmonic oscillators, and the Todd class
%J Journal of the American Mathematical Society
%D 1990
%P 159-256
%V 03
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1017783-4/
%R 10.1090/S0894-0347-1990-1017783-4
%F 10_1090_S0894_0347_1990_1017783_4
Bismut, Jean-Michel. Koszul complexes, harmonic oscillators, and the Todd class. Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 159-256. doi: 10.1090/S0894-0347-1990-1017783-4

[1] Atiyah, M. F. Circular symmetry and stationary-phase approximation Astérisque 1985 43 59

[2] Atiyah, M. F., Bott, R. A Lefschetz fixed point formula for elliptic complexes. I Ann. of Math. (2) 1967 374 407

[3] Atiyah, M., Bott, R., Patodi, V. K. On the heat equation and the index theorem Invent. Math. 1973 279 330

[4] Atiyah, M. F., Bott, R., Shapiro, A. Clifford modules Topology 1964 3 38

[5] Atiyah, M. F., Hitchin, N. J., Singer, I. M. Self-duality in four-dimensional Riemannian geometry Proc. Roy. Soc. London Ser. A 1978 425 461

[6] Baum, Paul, Fulton, William, Macpherson, Robert Riemann-Roch for singular varieties Inst. Hautes Études Sci. Publ. Math. 1975 101 145

[7] Berline, Nicole, Vergne, Michã¨Le A computation of the equivariant index of the Dirac operator Bull. Soc. Math. France 1985 305 345

[8] Bismut, Jean-Michel The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs Invent. Math. 1986 91 151

[9] Bismut, J.-M. Localization formulas, superconnections, and the index theorem for families Comm. Math. Phys. 1986 127 166

[10] Bismut, Jean-Michel Equivariant Bott-Chern currents and the Ray-Singer analytic torsion Math. Ann. 1990 495 507

[11] Bismut, Jean-Michel The Witten complex and the degenerate Morse inequalities J. Differential Geom. 1986 207 240

[12] Bismut, Jean-Michel Superconnection currents and complex immersions Invent. Math. 1990 59 113

[13] Bismut, Jean-Michel Transformations différentiables du mouvement brownien Astérisque 1985 61 87

[14] Bismut, Jean-Michel Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions Z. Wahrsch. Verw. Gebiete 1981 469 505

[15] Bismut, Jean-Michel The Atiyah-Singer theorems: a probabilistic approach. I. The index theorem J. Funct. Anal. 1984 56 99

[16] Bismut, Jean-Michel Index theorem and equivariant cohomology on the loop space Comm. Math. Phys. 1985 213 237

[17] Bismut, Jean-Michel Large deviations and the Malliavin calculus 1984

[18] Bismut, Jean-Michel The infinitesimal Lefschetz formulas: a heat equation proof J. Funct. Anal. 1985 435 457

[19] Bismut, Jean-Michel Complexe de Koszul, oscillateur harmonique et classe de Todd C. R. Acad. Sci. Paris Sér. I Math. 1989 111 114

[20] Bismut, J.-M., Gillet, H., Soulã©, C. Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion Comm. Math. Phys. 1988 49 78

[21] Bismut, J.-M., Gillet, H., Soulã©, C. Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion Comm. Math. Phys. 1988 49 78

[22] Bismut, J.-M., Gillet, H., Soulã©, C. Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion Comm. Math. Phys. 1988 49 78

[23] Bismut, J.-M., Gillet, H., Soulã©, C. Bott-Chern currents and complex immersions Duke Math. J. 1990 255 284

[24] Bismut, Jean-Michel Complexe de Koszul, oscillateur harmonique et classe de Todd C. R. Acad. Sci. Paris Sér. I Math. 1989 111 114

[25] Bott, Raoul, Chern, S. S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections Acta Math. 1965 71 112

[26] Donaldson, S. K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles Proc. London Math. Soc. (3) 1985 1 26

[27] Dellacherie, Claude, Meyer, Paul-Andr㩠Probabilités et potentiel. Chapitres V à VIII 1980

[28] Getzler, Ezra A short proof of the local Atiyah-Singer index theorem Topology 1986 111 117

[29] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1978

[30] Gillet, H., Soulã©, C. Analytic torsion and the arithmetic Todd genus Topology 1991 21 54

[31] Glimm, James, Jaffe, Arthur Quantum physics 1987

[32] Hitchin, Nigel Harmonic spinors Advances in Math. 1974 1 55

[33] Ikeda, Nobuyuki, Watanabe, Shinzo Stochastic differential equations and diffusion processes 1989

[34] Itã´, Kiyosi, Mckean, Henry P., Jr. Diffusion processes and their sample paths 1974

[35] Itã´, Kiyosi, Nisio, Makiko On the convergence of sums of independent Banach space valued random variables Osaka Math. J. 1968 35 48

[36] Knudsen, Finn Faye, Mumford, David The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div” Math. Scand. 1976 19 55

[37] Lã©Vy, Paul Wiener’s random function, and other Laplacian random functions 1951 171 187

[38] Malliavin, Paul Stochastic calculus of variation and hypoelliptic operators 1978 195 263

[39] Mathai, Varghese, Quillen, Daniel Superconnections, Thom classes, and equivariant differential forms Topology 1986 85 110

[40] Nikiforov, A., Ouvarov, V. Éléments de la théorie des fonctions spéciales 1976 256

[41] Quillen, Daniel Superconnections and the Chern character Topology 1985 89 95

[42] Ray, D. B., Singer, I. M. Analytic torsion for complex manifolds Ann. of Math. (2) 1973 154 177

[43] Serre, Jean-Pierre Cours d’arithmétique 1970 188

[44] Simon, Barry Functional integration and quantum physics 1979

[45] Simon, Barry Notes on infinite determinants of Hilbert space operators Advances in Math. 1977 244 273

[46] Witten, Edward Supersymmetry and Morse theory J. Differential Geometry 1982

[47] Yor, Marc Remarques sur une formule de Paul Lévy 1980 343 346

Cité par Sources :