Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1990_1013053_9,
author = {Lusztig, George},
title = {Finite-dimensional {Hopf} algebras arising from quantized universal enveloping algebra},
journal = {Journal of the American Mathematical Society},
pages = {257--296},
publisher = {mathdoc},
volume = {03},
number = {1},
year = {1990},
doi = {10.1090/S0894-0347-1990-1013053-9},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1013053-9/}
}
TY - JOUR AU - Lusztig, George TI - Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra JO - Journal of the American Mathematical Society PY - 1990 SP - 257 EP - 296 VL - 03 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1013053-9/ DO - 10.1090/S0894-0347-1990-1013053-9 ID - 10_1090_S0894_0347_1990_1013053_9 ER -
%0 Journal Article %A Lusztig, George %T Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra %J Journal of the American Mathematical Society %D 1990 %P 257-296 %V 03 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1013053-9/ %R 10.1090/S0894-0347-1990-1013053-9 %F 10_1090_S0894_0347_1990_1013053_9
Lusztig, George. Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra. Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 257-296. doi: 10.1090/S0894-0347-1990-1013053-9
[1] Ãléments de mathématique 1981 290
[2] Certains schémas de groupes semi-simples 1995
[3] Representations of Lie algebras of classical type with applications to linear groups J. Math. Mech. 1960 307 326
[4] Hopf algebras and the quantum Yang-Baxter equation Dokl. Akad. Nauk SSSR 1985 1060 1064
[5] A ð-difference analogue of ð(ð¤) and the Yang-Baxter equation Lett. Math. Phys. 1985 63 69
[6] Groups over ð 1966 90 98
[7] Quantum deformations of certain simple modules over enveloping algebras Adv. in Math. 1988 237 249
[8] Modular representations and quantum groups 1989 59 77
[9] Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra Comm. Math. Phys. 1988 581 593
[10] Representations of algebraic groups Nagoya Math. J. 1963 33 56
[11] Structure of certain induced representations of complex semisimple Lie algebras Bull. Amer. Math. Soc. 1968 160 166
[12] , , Quantum group interpretation of some conformal field theories Phys. Lett. B 1989 142 152
[13] , A comment on quantum group symmetry in conformal field theory Nuclear Phys. B 1989 557 574
Cité par Sources :