Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra
Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 257-296

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1990_1013053_9,
     author = {Lusztig, George},
     title = {Finite-dimensional {Hopf} algebras arising from quantized universal enveloping algebra},
     journal = {Journal of the American Mathematical Society},
     pages = {257--296},
     publisher = {mathdoc},
     volume = {03},
     number = {1},
     year = {1990},
     doi = {10.1090/S0894-0347-1990-1013053-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1013053-9/}
}
TY  - JOUR
AU  - Lusztig, George
TI  - Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra
JO  - Journal of the American Mathematical Society
PY  - 1990
SP  - 257
EP  - 296
VL  - 03
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1013053-9/
DO  - 10.1090/S0894-0347-1990-1013053-9
ID  - 10_1090_S0894_0347_1990_1013053_9
ER  - 
%0 Journal Article
%A Lusztig, George
%T Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra
%J Journal of the American Mathematical Society
%D 1990
%P 257-296
%V 03
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1990-1013053-9/
%R 10.1090/S0894-0347-1990-1013053-9
%F 10_1090_S0894_0347_1990_1013053_9
Lusztig, George. Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra. Journal of the American Mathematical Society, Tome 03 (1990) no. 1, pp. 257-296. doi: 10.1090/S0894-0347-1990-1013053-9

[1] Bourbaki, Nicolas Éléments de mathématique 1981 290

[2] Chevalley, Claude Certains schémas de groupes semi-simples 1995

[3] Curtis, Charles W. Representations of Lie algebras of classical type with applications to linear groups J. Math. Mech. 1960 307 326

[4] Drinfel′D, V. G. Hopf algebras and the quantum Yang-Baxter equation Dokl. Akad. Nauk SSSR 1985 1060 1064

[5] Jimbo, Michio A 𝑞-difference analogue of 𝑈(𝔤) and the Yang-Baxter equation Lett. Math. Phys. 1985 63 69

[6] Kostant, Bertram Groups over 𝑍 1966 90 98

[7] Lusztig, G. Quantum deformations of certain simple modules over enveloping algebras Adv. in Math. 1988 237 249

[8] Lusztig, G. Modular representations and quantum groups 1989 59 77

[9] Rosso, Marc Finite-dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra Comm. Math. Phys. 1988 581 593

[10] Steinberg, Robert Representations of algebraic groups Nagoya Math. J. 1963 33 56

[11] Verma, Daya-Nand Structure of certain induced representations of complex semisimple Lie algebras Bull. Amer. Math. Soc. 1968 160 166

[12] Alvarez-Gaumã©, L., Gomez, C., Sierra, G. Quantum group interpretation of some conformal field theories Phys. Lett. B 1989 142 152

[13] Moore, Gregory, Reshetikhin, Nicolai A comment on quantum group symmetry in conformal field theory Nuclear Phys. B 1989 557 574

Cité par Sources :