Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1989_0999662_3,
author = {Sogge, Christopher D.},
title = {Oscillatory integrals and unique continuation for second order elliptic differential equations},
journal = {Journal of the American Mathematical Society},
pages = {491--515},
publisher = {mathdoc},
volume = {02},
number = {3},
year = {1989},
doi = {10.1090/S0894-0347-1989-0999662-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999662-3/}
}
TY - JOUR AU - Sogge, Christopher D. TI - Oscillatory integrals and unique continuation for second order elliptic differential equations JO - Journal of the American Mathematical Society PY - 1989 SP - 491 EP - 515 VL - 02 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999662-3/ DO - 10.1090/S0894-0347-1989-0999662-3 ID - 10_1090_S0894_0347_1989_0999662_3 ER -
%0 Journal Article %A Sogge, Christopher D. %T Oscillatory integrals and unique continuation for second order elliptic differential equations %J Journal of the American Mathematical Society %D 1989 %P 491-515 %V 02 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999662-3/ %R 10.1090/S0894-0347-1989-0999662-3 %F 10_1090_S0894_0347_1989_0999662_3
Sogge, Christopher D. Oscillatory integrals and unique continuation for second order elliptic differential equations. Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 491-515. doi: 10.1090/S0894-0347-1989-0999662-3
[1] , Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities Amer. J. Math. 1980 179 217
[2] , , Strictly pseudoconvex domains in ð¶â¿ Bull. Amer. Math. Soc. (N.S.) 1983 125 322
[3] , Oscillatory integrals and a multiplier problem for the disc Studia Math. 1972
[4] The multiplier problem for the ball Ann. of Math. (2) 1971 330 336
[5] Differential geometry 1977
[6] The spectral function of an elliptic operator Acta Math. 1968 193 218
[7] Uniqueness theorems for second order elliptic differential equations Comm. Partial Differential Equations 1983 21 64
[8] Carleman inequalities for the Dirac and Laplace operators and unique continuation Adv. in Math. 1986 118 134
[9] , Unique continuation and absence of positive eigenvalues for Schrödinger operators Ann. of Math. (2) 1985 463 494
[10] , , Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators Duke Math. J. 1987 329 347
[11] Uniqueness in Cauchy problems for differential equations with constant leading coefficients Comm. Pure Appl. Math. 1957 89 105
[12] Unique continuation for Schrödinger operators in dimension three or less Ann. Inst. Fourier (Grenoble) 1984 189 200
[13] Oscillatory integrals and spherical harmonics Duke Math. J. 1986 43 65
[14] Concerning the ð¿^{ð} norm of spectral clusters for second-order elliptic operators on compact manifolds J. Funct. Anal. 1988 123 138
[15] On the convergence of Riesz means on compact manifolds Ann. of Math. (2) 1987 439 447
[16] Oscillatory integrals in Fourier analysis 1986 307 355
[17] Introduction to pseudodifferential and Fourier integral operators. Vol. 2 1980
[18] Solution of Cauchy problems modulo flat functions Comm. Partial Differential Equations 1976 45 72
Cité par Sources :