Oscillatory integrals and unique continuation for second order elliptic differential equations
Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 491-515

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1989_0999662_3,
     author = {Sogge, Christopher D.},
     title = {Oscillatory integrals and unique continuation for second order elliptic differential equations},
     journal = {Journal of the American Mathematical Society},
     pages = {491--515},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0999662-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999662-3/}
}
TY  - JOUR
AU  - Sogge, Christopher D.
TI  - Oscillatory integrals and unique continuation for second order elliptic differential equations
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 491
EP  - 515
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999662-3/
DO  - 10.1090/S0894-0347-1989-0999662-3
ID  - 10_1090_S0894_0347_1989_0999662_3
ER  - 
%0 Journal Article
%A Sogge, Christopher D.
%T Oscillatory integrals and unique continuation for second order elliptic differential equations
%J Journal of the American Mathematical Society
%D 1989
%P 491-515
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999662-3/
%R 10.1090/S0894-0347-1989-0999662-3
%F 10_1090_S0894_0347_1989_0999662_3
Sogge, Christopher D. Oscillatory integrals and unique continuation for second order elliptic differential equations. Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 491-515. doi: 10.1090/S0894-0347-1989-0999662-3

[1] Alinhac, S., Baouendi, M. S. Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities Amer. J. Math. 1980 179 217

[2] Beals, Michael, Fefferman, Charles, Grossman, Robert Strictly pseudoconvex domains in 𝐶ⁿ Bull. Amer. Math. Soc. (N.S.) 1983 125 322

[3] Carleson, Lennart, Sjã¶Lin, Per Oscillatory integrals and a multiplier problem for the disc Studia Math. 1972

[4] Fefferman, Charles The multiplier problem for the ball Ann. of Math. (2) 1971 330 336

[5] Guggenheimer, Heinrich W. Differential geometry 1977

[6] Hã¶Rmander, Lars The spectral function of an elliptic operator Acta Math. 1968 193 218

[7] Hã¶Rmander, Lars Uniqueness theorems for second order elliptic differential equations Comm. Partial Differential Equations 1983 21 64

[8] Jerison, David Carleman inequalities for the Dirac and Laplace operators and unique continuation Adv. in Math. 1986 118 134

[9] Jerison, David, Kenig, Carlos E. Unique continuation and absence of positive eigenvalues for Schrödinger operators Ann. of Math. (2) 1985 463 494

[10] Kenig, C. E., Ruiz, A., Sogge, C. D. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators Duke Math. J. 1987 329 347

[11] Nirenberg, Louis Uniqueness in Cauchy problems for differential equations with constant leading coefficients Comm. Pure Appl. Math. 1957 89 105

[12] Sawyer, Eric T. Unique continuation for Schrödinger operators in dimension three or less Ann. Inst. Fourier (Grenoble) 1984 189 200

[13] Sogge, Christopher D. Oscillatory integrals and spherical harmonics Duke Math. J. 1986 43 65

[14] Sogge, Christopher D. Concerning the 𝐿^{𝑝} norm of spectral clusters for second-order elliptic operators on compact manifolds J. Funct. Anal. 1988 123 138

[15] Sogge, Christopher D. On the convergence of Riesz means on compact manifolds Ann. of Math. (2) 1987 439 447

[16] Stein, E. M. Oscillatory integrals in Fourier analysis 1986 307 355

[17] Trã¨Ves, Franã§Ois Introduction to pseudodifferential and Fourier integral operators. Vol. 2 1980

[18] Treves, F. Solution of Cauchy problems modulo flat functions Comm. Partial Differential Equations 1976 45 72

Cité par Sources :