Ricci curvature bounds and Einstein metrics on compact manifolds
Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 455-490

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1989_0999661_1,
     author = {Anderson, Michael T.},
     title = {Ricci curvature bounds and {Einstein} metrics on compact manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {455--490},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0999661-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999661-1/}
}
TY  - JOUR
AU  - Anderson, Michael T.
TI  - Ricci curvature bounds and Einstein metrics on compact manifolds
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 455
EP  - 490
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999661-1/
DO  - 10.1090/S0894-0347-1989-0999661-1
ID  - 10_1090_S0894_0347_1989_0999661_1
ER  - 
%0 Journal Article
%A Anderson, Michael T.
%T Ricci curvature bounds and Einstein metrics on compact manifolds
%J Journal of the American Mathematical Society
%D 1989
%P 455-490
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0999661-1/
%R 10.1090/S0894-0347-1989-0999661-1
%F 10_1090_S0894_0347_1989_0999661_1
Anderson, Michael T. Ricci curvature bounds and Einstein metrics on compact manifolds. Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 455-490. doi: 10.1090/S0894-0347-1989-0999661-1

[1] Bemelmans, Josef, Min-Oo, Ruh, Ernst A. Smoothing Riemannian metrics Math. Z. 1984 69 74

[2] Berger, Marcel Sur les variétés riemanniennes pincées juste au-dessous de 1/4 Ann. Inst. Fourier (Grenoble) 1983

[3] Besse, Arthur L. Einstein manifolds 1987

[4] Bishop, Richard L., Crittenden, Richard J. Geometry of manifolds 1964

[5] Calabi, E. Métriques kählériennes et fibrés holomorphes Ann. Sci. École Norm. Sup. (4) 1979 269 294

[6] Cheeger, Jeff Finiteness theorems for Riemannian manifolds Amer. J. Math. 1970 61 74

[7] Cheeger, Jeff, Gromov, Mikhail, Taylor, Michael Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds J. Differential Geometry 1982 15 53

[8] Croke, Christopher B. Some isoperimetric inequalities and eigenvalue estimates Ann. Sci. École Norm. Sup. (4) 1980 419 435

[9] Deturck, Dennis M., Kazdan, Jerry L. Some regularity theorems in Riemannian geometry Ann. Sci. École Norm. Sup. (4) 1981 249 260

[10] Ebin, David G. The manifold of Riemannian metrics 1970 11 40

[11] Gilbarg, David, Trudinger, Neil S. Elliptic partial differential equations of second order 1977

[12] Four-manifold theory 1984

[13] Greene, R. E., Wu, H. Lipschitz convergence of Riemannian manifolds Pacific J. Math. 1988 119 141

[14] Gromov, Mikhael Structures métriques pour les variétés riemanniennes 1981

[15] Hamilton, Richard S. Three-manifolds with positive Ricci curvature J. Differential Geometry 1982 255 306

[16] Hitchin, N. J. Polygons and gravitons Math. Proc. Cambridge Philos. Soc. 1979 465 476

[17] Jost, Jã¼Rgen, Karcher, Hermann Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen Manuscripta Math. 1982 27 77

[18] Kasue, Atsushi A convergence theorem for Riemannian manifolds and some applications Nagoya Math. J. 1989 21 51

[19] Katsuda, Atsushi Gromov’s convergence theorem and its application Nagoya Math. J. 1985 11 48

[20] Klingenberg, W. Contributions to Riemannian geometry in the large Ann. of Math. (2) 1959 654 666

[21] Kobayashi, Ryoichi, Todorov, Andrey N. Polarized period map for generalized 𝐾3 surfaces and the moduli of Einstein metrics Tohoku Math. J. (2) 1987 341 363

[22] Morrey, Charles B., Jr. Multiple integrals in the calculus of variations 1966

[23] Peters, Stefan Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds J. Reine Angew. Math. 1984 77 82

[24] Sacks, J., Uhlenbeck, K. The existence of minimal immersions of 2-spheres Ann. of Math. (2) 1981 1 24

[25] Schoen, Richard M. Analytic aspects of the harmonic map problem 1984 321 358

[26] Sibner, L. M. The isolated point singularity problem for the coupled Yang-Mills equations in higher dimensions Math. Ann. 1985 125 131

[27] Tian, Gang, Yau, Shing-Tung Kähler-Einstein metrics on complex surfaces with 𝐶₁>0 Comm. Math. Phys. 1987 175 203

[28] Uhlenbeck, Karen K. Removable singularities in Yang-Mills fields Comm. Math. Phys. 1982 11 29

[29] Uhlenbeck, Karen K. Connections with 𝐿^{𝑝} bounds on curvature Comm. Math. Phys. 1982 31 42

[30] Wang, M., Ziller, W. Einstein metrics with positive scalar curvature 1986 319 336

[31] Wolf, Joseph A. Spaces of constant curvature 1974

Cité par Sources :