Hopf algebras up to homotopy
Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 417-453

Voir la notice de l'article provenant de la source American Mathematical Society

Let $(A,d)$ denote a free $r$-reduced differential graded $R$-algebra, where $R$ is a commutative ring containing ${n^{ - 1}}$ for $1 \leq n p$. Suppose a “diagonal” $\psi :A \to A \otimes A$ exists which satisfies the Hopf algebra axioms, including cocommutativity and coassociativity, up to homotopy. We show that $(A,d)$ must equal $U(L,\delta )$ for some free differential graded Lie algebra $(L,\delta )$ if $A$ is generated as an $R$-algebra in dimensions below $rp$. As a consequence, the rational singular chain complex on a topological monoid is seen to be the enveloping algebra of a Lie algebra. We also deduce, for an $r$-connected CW complex $X$ of dimension $\leq rp$, that the Adams-Hilton model over $R$ is an enveloping algebra and that $p\text {th}$ powers vanish in ${\tilde H^ * }(\Omega X;{{\mathbf {Z}}_p})$.
@article{10_1090_S0894_0347_1989_0991015_7,
     author = {Anick, David J.},
     title = {Hopf algebras up to homotopy},
     journal = {Journal of the American Mathematical Society},
     pages = {417--453},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0991015-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0991015-7/}
}
TY  - JOUR
AU  - Anick, David J.
TI  - Hopf algebras up to homotopy
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 417
EP  - 453
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0991015-7/
DO  - 10.1090/S0894-0347-1989-0991015-7
ID  - 10_1090_S0894_0347_1989_0991015_7
ER  - 
%0 Journal Article
%A Anick, David J.
%T Hopf algebras up to homotopy
%J Journal of the American Mathematical Society
%D 1989
%P 417-453
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0991015-7/
%R 10.1090/S0894-0347-1989-0991015-7
%F 10_1090_S0894_0347_1989_0991015_7
Anick, David J. Hopf algebras up to homotopy. Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 417-453. doi: 10.1090/S0894-0347-1989-0991015-7

[1] Adams, J. F. On the cobar construction Proc. Nat. Acad. Sci. U.S.A. 1956 409 412

[2] Adams, J. F., Hilton, P. J. On the chain algebra of a loop space Comment. Math. Helv. 1956 305 330

[3] Anick, David J. A model of Adams-Hilton type for fiber squares Illinois J. Math. 1985 463 502

[4] Aubry, Marc, Lemaire, Jean-Michel Homotopies d’algèbres de Lie et de leurs algèbres enveloppantes 1988 26 30

[5] Baues, Hans Joachim Algebraic homotopy 1989

[6] Baues, H. J., Lemaire, J.-M. Minimal models in homotopy theory Math. Ann. 1977 219 242

[7] Cohen, F. R., Moore, J. C., Neisendorfer, J. A. Torsion in homotopy groups Ann. of Math. (2) 1979 121 168

[8] Mcgibbon, C. A., Wilkerson, C. W. Loop spaces of finite complexes at large primes Proc. Amer. Math. Soc. 1986 698 702

[9] Milnor, John W., Moore, John C. On the structure of Hopf algebras Ann. of Math. (2) 1965 211 264

[10] Munkholm, Hans J. DGA algebras as a Quillen model category. Relations to shm maps J. Pure Appl. Algebra 1978 221 232

[11] Quillen, Daniel G. Homotopical algebra 1967

[12] Quillen, Daniel Rational homotopy theory Ann. of Math. (2) 1969 205 295

[13] Sullivan, Dennis Infinitesimal computations in topology Inst. Hautes Études Sci. Publ. Math. 1977

[14] Tanrã©, Daniel Homotopie rationnelle: modèles de Chen, Quillen, Sullivan 1983

Cité par Sources :