Two elementary proofs of the 𝐿² boundedness of Cauchy integrals on Lipschitz curves
Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 553-564

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1989_0986825_6,
     author = {Coifman, R. R. and Jones, Peter W. and Semmes, Stephen},
     title = {Two elementary proofs of the {{\dh}{\textquestiondown}\^A{\texttwosuperior}} boundedness of {Cauchy} integrals on {Lipschitz} curves},
     journal = {Journal of the American Mathematical Society},
     pages = {553--564},
     publisher = {mathdoc},
     volume = {02},
     number = {3},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0986825-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0986825-6/}
}
TY  - JOUR
AU  - Coifman, R. R.
AU  - Jones, Peter W.
AU  - Semmes, Stephen
TI  - Two elementary proofs of the 𝐿² boundedness of Cauchy integrals on Lipschitz curves
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 553
EP  - 564
VL  - 02
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0986825-6/
DO  - 10.1090/S0894-0347-1989-0986825-6
ID  - 10_1090_S0894_0347_1989_0986825_6
ER  - 
%0 Journal Article
%A Coifman, R. R.
%A Jones, Peter W.
%A Semmes, Stephen
%T Two elementary proofs of the 𝐿² boundedness of Cauchy integrals on Lipschitz curves
%J Journal of the American Mathematical Society
%D 1989
%P 553-564
%V 02
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0986825-6/
%R 10.1090/S0894-0347-1989-0986825-6
%F 10_1090_S0894_0347_1989_0986825_6
Coifman, R. R.; Jones, Peter W.; Semmes, Stephen. Two elementary proofs of the 𝐿² boundedness of Cauchy integrals on Lipschitz curves. Journal of the American Mathematical Society, Tome 02 (1989) no. 3, pp. 553-564. doi: 10.1090/S0894-0347-1989-0986825-6

[1] Calderã³N, A.-P. Cauchy integrals on Lipschitz curves and related operators Proc. Nat. Acad. Sci. U.S.A. 1977 1324 1327

[2] Coifman, R. R., Mcintosh, A., Meyer, Y. L’intégrale de Cauchy définit un opérateur borné sur 𝐿² pour les courbes lipschitziennes Ann. of Math. (2) 1982 361 387

[3] Coifman, R. R., Rochberg, R. Representation theorems for holomorphic and harmonic functions in 𝐿^{𝑝} 1980 11 66

[4] David, Guy Opérateurs intégraux singuliers sur certaines courbes du plan complexe Ann. Sci. École Norm. Sup. (4) 1984 157 189

[5] David, Guy, Journã©, Jean-Lin A boundedness criterion for generalized Calderón-Zygmund operators Ann. of Math. (2) 1984 371 397

[6] David, G., Journã©, J.-L., Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation Rev. Mat. Iberoamericana 1985 1 56

[7] Gamelin, T. W. Wolff’s proof of the corona theorem Israel J. Math. 1980 113 119

[8] Jones, Peter W. Square functions, Cauchy integrals, analytic capacity, and harmonic measure 1989 24 68

[9] Kenig, Carlos E. Weighted 𝐻^{𝑝} spaces on Lipschitz domains Amer. J. Math. 1980 129 163

[10] Mcintosh, Alan, Meyer, Yves Algèbres d’opérateurs définis par des intégrales singulières C. R. Acad. Sci. Paris Sér. I Math. 1985 395 397

[11] Murai, Takafumi A real variable method for the Cauchy transform, and analytic capacity 1988

Cité par Sources :