Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1989_0973309_4,
     author = {Farrell, F. T. and Jones, L. E.},
     title = {A topological analogue of {Mostow\^as} rigidity theorem},
     journal = {Journal of the American Mathematical Society},
     pages = {257--370},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0973309-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973309-4/}
}
                      
                      
                    TY - JOUR AU - Farrell, F. T. AU - Jones, L. E. TI - A topological analogue of Mostowâs rigidity theorem JO - Journal of the American Mathematical Society PY - 1989 SP - 257 EP - 370 VL - 02 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973309-4/ DO - 10.1090/S0894-0347-1989-0973309-4 ID - 10_1090_S0894_0347_1989_0973309_4 ER -
%0 Journal Article %A Farrell, F. T. %A Jones, L. E. %T A topological analogue of Mostowâs rigidity theorem %J Journal of the American Mathematical Society %D 1989 %P 257-370 %V 02 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973309-4/ %R 10.1090/S0894-0347-1989-0973309-4 %F 10_1090_S0894_0347_1989_0973309_4
Farrell, F. T.; Jones, L. E. A topological analogue of Mostowâs rigidity theorem. Journal of the American Mathematical Society, Tome 02 (1989) no. 2, pp. 257-370. doi: 10.1090/S0894-0347-1989-0973309-4
[1] , The functors ð¾âáµ¢ and pseudo-isotopies of polyhedra Ann. of Math. (2) 1977 201 223
[2] Geodesic flows on closed Riemann manifolds with negative curvature. 1969
[3] , , Manifolds of nonpositive curvature 1985
[4] , Manifolds of negative curvature Trans. Amer. Math. Soc. 1969 1 49
[5] Stable real cohomology of arithmetic groups Ann. Sci. Ãcole Norm. Sup. (4) 1974
[6] , A surgery theory for ðº-manifolds and stratified sets 1975 27 36
[7] , The homotopy type of the space of diffeomorphisms. I, II Trans. Amer. Math. Soc. 1974
[8] , Stability of concordances and the suspension homomorphism Ann. of Math. (2) 1977 449 472
[9] Automorphisms of manifolds 1978 347 371
[10] Homotoping ð-maps to homeomorphisms Amer. J. Math. 1979 567 582
[11] , Expanding endomorphisms of flat manifolds Topology 1968 139 141
[12] The obstruction to fibering a manifold over a circle Indiana Univ. Math. J. 1971/72 315 346
[13] , Manifolds with ðáµ¢ Amer. J. Math. 1973 813 848
[14] , Rational ð¿-groups of Bieberbach groups Comment. Math. Helv. 1977 89 109
[15] , The topological-Euclidean space form problem Invent. Math. 1978 181 192
[16] , On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds 1978 325 337
[17] , The Whitehead group of poly-(finite or cyclic) groups J. London Math. Soc. (2) 1981 308 324
[18] , The stable topological-hyperbolic space form problem for complete manifolds of finite volume Invent. Math. 1982 155 170
[19] , Topological characterization of flat and almost flat Riemannian manifolds ðâ¿ (ð̸ Amer. J. Math. 1983 641 672
[20] , Algebraic ð¾-theory of spaces stratified fibered over hyperbolic orbifolds Proc. Nat. Acad. Sci. U.S.A. 1986 5364 5366
[21] , ð¾-theory and dynamics. I Ann. of Math. (2) 1986 531 569
[22] , Algebraic ð¾-theory of discrete subgroups of Lie groups Proc. Nat. Acad. Sci. U.S.A. 1987 3095 3096
[23] , ð¾-theory and dynamics. II Ann. of Math. (2) 1987 451 493
[24] , The surgery ð¿-groups of poly-(finite or cyclic) groups Invent. Math. 1988 559 586
[25] , Topological rigidity for hyperbolic manifolds Bull. Amer. Math. Soc. (N.S.) 1988 277 282
[26] , Foliated control theory. I, II ð¾-Theory 1988 357 430
[27] Manifolds of negative curvature J. Differential Geometry 1978 223 230
[28] Concordance spaces, higher simple-homotopy theory, and applications 1978 3 21
[29] , Pseudo-isotopies of compact manifolds 1973
[30] Notes on differential geometry 1965
[31] Immersions of manifolds Trans. Amer. Math. Soc. 1959 242 276
[32] The stability theorem for smooth pseudoisotopies ð¾-Theory 1988
[33] Patch spaces: a geometric representation for Poincaré spaces Ann. of Math. (2) 1973 306 343
[34] Construction of surgery problems 1979 367 391
[35] Topological invariants of elliptic operators. I. ð¾-homology Izv. Akad. Nauk SSSR Ser. Mat. 1975 796 838
[36] Equivariant ð¾ð¾-theory and the Novikov conjecture Invent. Math. 1988 147 201
[37] , Foundational essays on topological manifolds, smoothings, and triangulations 1977
[38] Poincaré duality cobordism Ann. of Math. (2) 1972 211 244
[39] Proper surgery groups and Wall-Novikov groups 1973 526 539
[40] A unique decomposition theorem for 3-manifolds Amer. J. Math. 1962 1 7
[41] On fundamental groups of complete affinely flat manifolds Advances in Math. 1977 178 187
[42] Infinite-dimensional representations of discrete groups, and higher signatures Izv. Akad. Nauk SSSR Ser. Mat. 1974 81 106
[43] Quasi-conformal mappings in ð-space and the rigidity of hyperbolic space forms Inst. Hautes Ãtudes Sci. Publ. Math. 1968 53 104
[44] Strong rigidity of locally symmetric spaces 1973
[45] Induction theorems for groups of homotopy manifold structures Mem. Amer. Math. Soc. 1982
[46] An infinite family of non-Haken hyperbolic 3-manifolds with vanishing Whitehead groups Math. Proc. Cambridge Philos. Soc. 1986 239 246
[47] , Higher Whitehead groups of certain bundles over Seifert manifolds Proc. Amer. Math. Soc. 1984 1 5
[48] , Whitehead groups of certain hyperbolic manifolds. II 1987 415 431
[49] Strong rigidity of ð-rank 1 lattices Invent. Math. 1973 255 286
[50] A geometric formulation of surgery 1970 500 511
[51] A geometric formulation of surgery 1970 500 511
[52] Ends of maps. I Ann. of Math. (2) 1979 275 331
[53] Algebraic ð¿-theory. I. Foundations Proc. London Math. Soc. (3) 1973 101 125
[54] Algebraic ð¾-theory of topological spaces. I 1978 35 60
[55] Surgery on compact manifolds 1970
[56] Ends of maps. II Invent. Math. 1982 353 424
[57] , A topological analogue of Mostowâs rigidity theorem J. Amer. Math. Soc. 1989 257 370
Cité par Sources :
