Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1989_0973308_2,
     author = {Zimmer, Robert J.},
     title = {Representations of fundamental groups of manifolds with a semisimple transformation group},
     journal = {Journal of the American Mathematical Society},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0973308-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973308-2/}
}
                      
                      
                    TY - JOUR AU - Zimmer, Robert J. TI - Representations of fundamental groups of manifolds with a semisimple transformation group JO - Journal of the American Mathematical Society PY - 1989 SP - 201 EP - 213 VL - 02 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973308-2/ DO - 10.1090/S0894-0347-1989-0973308-2 ID - 10_1090_S0894_0347_1989_0973308_2 ER -
%0 Journal Article %A Zimmer, Robert J. %T Representations of fundamental groups of manifolds with a semisimple transformation group %J Journal of the American Mathematical Society %D 1989 %P 201-213 %V 02 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973308-2/ %R 10.1090/S0894-0347-1989-0973308-2 %F 10_1090_S0894_0347_1989_0973308_2
Zimmer, Robert J. Representations of fundamental groups of manifolds with a semisimple transformation group. Journal of the American Mathematical Society, Tome 02 (1989) no. 2, pp. 201-213. doi: 10.1090/S0894-0347-1989-0973308-2
[1] , Kazhdan groups, cocycles and trees Amer. J. Math. 1990 271 287
[2] Stable real cohomology of arithmetic groups Ann. Sci. Ãcole Norm. Sup. (4) 1974
[3] Stable real cohomology of arithmetic groups. II 1981 21 55
[4] , Continuous cohomology, discrete subgroups, and representations of reductive groups 1980
[5] Rigid transformations groups 1988 65 139
[6] On the existence of irreducible discrete subgroups in isotypic Lie groups of classical type Proc. London Math. Soc. (3) 1988 51 77
[7] , Variants of Kazhdanâs property for subgroups of semisimple groups Israel J. Math. 1989 289 299
[8] Residually finite groups Bull. Amer. Math. Soc. 1969 305 316
[9] Induced and amenable ergodic actions of Lie groups Ann. Sci. Ãcole Norm. Sup. (4) 1978 407 428
[10] Strong rigidity for ergodic actions of semisimple Lie groups Ann. of Math. (2) 1980 511 529
[11] Orbit equivalence and rigidity of ergodic actions of Lie groups Ergodic Theory Dynam. Systems 1981 237 253
[12] Ergodic theory and semisimple groups 1984
[13] Ergodic theory and the automorphism group of a ðº-structure 1987 247 278
[14] Arithmeticity of holonomy groups of Lie foliations J. Amer. Math. Soc. 1988 35 58
Cité par Sources :
