Representations of fundamental groups of manifolds with a semisimple transformation group
Journal of the American Mathematical Society, Tome 02 (1989) no. 2, pp. 201-213

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1989_0973308_2,
     author = {Zimmer, Robert J.},
     title = {Representations of fundamental groups of manifolds with a semisimple transformation group},
     journal = {Journal of the American Mathematical Society},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {02},
     number = {2},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0973308-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973308-2/}
}
TY  - JOUR
AU  - Zimmer, Robert J.
TI  - Representations of fundamental groups of manifolds with a semisimple transformation group
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 201
EP  - 213
VL  - 02
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973308-2/
DO  - 10.1090/S0894-0347-1989-0973308-2
ID  - 10_1090_S0894_0347_1989_0973308_2
ER  - 
%0 Journal Article
%A Zimmer, Robert J.
%T Representations of fundamental groups of manifolds with a semisimple transformation group
%J Journal of the American Mathematical Society
%D 1989
%P 201-213
%V 02
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0973308-2/
%R 10.1090/S0894-0347-1989-0973308-2
%F 10_1090_S0894_0347_1989_0973308_2
Zimmer, Robert J. Representations of fundamental groups of manifolds with a semisimple transformation group. Journal of the American Mathematical Society, Tome 02 (1989) no. 2, pp. 201-213. doi: 10.1090/S0894-0347-1989-0973308-2

[1] Adams, S. R., Spatzier, R. J. Kazhdan groups, cocycles and trees Amer. J. Math. 1990 271 287

[2] Borel, Armand Stable real cohomology of arithmetic groups Ann. Sci. École Norm. Sup. (4) 1974

[3] Borel, Armand Stable real cohomology of arithmetic groups. II 1981 21 55

[4] Borel, Armand, Wallach, Nolan R. Continuous cohomology, discrete subgroups, and representations of reductive groups 1980

[5] Gromov, Michael Rigid transformations groups 1988 65 139

[6] Johnson, F. E. A. On the existence of irreducible discrete subgroups in isotypic Lie groups of classical type Proc. London Math. Soc. (3) 1988 51 77

[7] Lubotzky, Alexander, Zimmer, Robert J. Variants of Kazhdan’s property for subgroups of semisimple groups Israel J. Math. 1989 289 299

[8] Magnus, W. Residually finite groups Bull. Amer. Math. Soc. 1969 305 316

[9] Zimmer, Robert J. Induced and amenable ergodic actions of Lie groups Ann. Sci. École Norm. Sup. (4) 1978 407 428

[10] Zimmer, Robert J. Strong rigidity for ergodic actions of semisimple Lie groups Ann. of Math. (2) 1980 511 529

[11] Zimmer, Robert J. Orbit equivalence and rigidity of ergodic actions of Lie groups Ergodic Theory Dynam. Systems 1981 237 253

[12] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

[13] Zimmer, Robert J. Ergodic theory and the automorphism group of a 𝐺-structure 1987 247 278

[14] Zimmer, Robert J. Arithmeticity of holonomy groups of Lie foliations J. Amer. Math. Soc. 1988 35 58

Cité par Sources :