A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator
Journal of the American Mathematical Society, Tome 02 (1989) no. 1, pp. 127-135

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1989_0955604_8,
     author = {Fefferman, R.},
     title = {A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator},
     journal = {Journal of the American Mathematical Society},
     pages = {127--135},
     publisher = {mathdoc},
     volume = {02},
     number = {1},
     year = {1989},
     doi = {10.1090/S0894-0347-1989-0955604-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0955604-8/}
}
TY  - JOUR
AU  - Fefferman, R.
TI  - A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator
JO  - Journal of the American Mathematical Society
PY  - 1989
SP  - 127
EP  - 135
VL  - 02
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0955604-8/
DO  - 10.1090/S0894-0347-1989-0955604-8
ID  - 10_1090_S0894_0347_1989_0955604_8
ER  - 
%0 Journal Article
%A Fefferman, R.
%T A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator
%J Journal of the American Mathematical Society
%D 1989
%P 127-135
%V 02
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1989-0955604-8/
%R 10.1090/S0894-0347-1989-0955604-8
%F 10_1090_S0894_0347_1989_0955604_8
Fefferman, R. A criterion for the absolute continuity of the harmonic measure associated with an elliptic operator. Journal of the American Mathematical Society, Tome 02 (1989) no. 1, pp. 127-135. doi: 10.1090/S0894-0347-1989-0955604-8

[1] Littman, W., Stampacchia, G., Weinberger, H. F. Regular points for elliptic equations with discontinuous coefficients Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 1963 43 77

[2] Caffarelli, Luis A., Fabes, Eugene B., Kenig, Carlos E. Completely singular elliptic-harmonic measures Indiana Univ. Math. J. 1981 917 924

[3] Fabes, Eugene B., Jerison, David S., Kenig, Carlos E. Necessary and sufficient conditions for absolute continuity of elliptic-harmonic measure Ann. of Math. (2) 1984 121 141

[4] Dahlberg, Bjã¶Rn E. J. On the absolute continuity of elliptic measures Amer. J. Math. 1986 1119 1138

[5] Coifman, R. R., Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals Studia Math. 1974 241 250

[6] Stein, E. M. Note on the class 𝐿 𝑙𝑜𝑔 𝐿 Studia Math. 1969 305 310

[7] Caffarelli, L., Fabes, E., Mortola, S., Salsa, S. Boundary behavior of nonnegative solutions of elliptic operators in divergence form Indiana Univ. Math. J. 1981 621 640

[8] Dahlberg, Bjã¶Rn E. J., Jerison, David S., Kenig, Carlos E. Area integral estimates for elliptic differential operators with nonsmooth coefficients Ark. Mat. 1984 97 108

[9] John, F., Nirenberg, L. On functions of bounded mean oscillation Comm. Pure Appl. Math. 1961 415 426

Cité par Sources :