Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1988_0944577_9,
     author = {Simpson, Carlos T.},
     title = {Constructing variations of {Hodge} structure using {Yang-Mills} theory and applications to uniformization},
     journal = {Journal of the American Mathematical Society},
     pages = {867--918},
     publisher = {mathdoc},
     volume = {01},
     number = {4},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0944577-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0944577-9/}
}
                      
                      
                    TY - JOUR AU - Simpson, Carlos T. TI - Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization JO - Journal of the American Mathematical Society PY - 1988 SP - 867 EP - 918 VL - 01 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0944577-9/ DO - 10.1090/S0894-0347-1988-0944577-9 ID - 10_1090_S0894_0347_1988_0944577_9 ER -
%0 Journal Article %A Simpson, Carlos T. %T Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization %J Journal of the American Mathematical Society %D 1988 %P 867-918 %V 01 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0944577-9/ %R 10.1090/S0894-0347-1988-0944577-9 %F 10_1090_S0894_0347_1988_0944577_9
Simpson, Carlos T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. Journal of the American Mathematical Society, Tome 01 (1988) no. 4, pp. 867-918. doi: 10.1090/S0894-0347-1988-0944577-9
[1] An extension of Schwarzâs lemma Trans. Amer. Math. Soc. 1938 359 364
[2] Sur la fonction exponentielle C. R. Acad. Sci. Paris Sér. A-B 1970
[3] Flat ðº-bundles with canonical metrics J. Differential Geom. 1988 361 382
[4] , Analytic cycles and vector bundles on non-compact algebraic varieties Invent. Math. 1975 1 106
[5] Un théorème de finitude pour la monodromie 1987 1 19
[6] Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles Proc. London Math. Soc. (3) 1985 1 26
[7] Infinite determinants, stable bundles and curvature Duke Math. J. 1987 231 247
[8] Twisted harmonic maps and the self-duality equations Proc. London Math. Soc. (3) 1987 127 131
[9] Topics in transcendental algebraic geometry 1984
[10] , Locally homogeneous complex manifolds Acta Math. 1969 253 302
[11] Harmonic maps of manifolds with boundary 1975
[12] The self-duality equations on a Riemann surface Proc. London Math. Soc. (3) 1987 59 126
[13] Vanishing cycle sheaves and holonomic systems of differential equations 1983 134 142
[14] On arithmetic varieties 1975 151 217
[15] Einstein-Kaehler metrics on open algebraic surfaces of general type Tohoku Math. J. (2) 1985 43 77
[16] , Holomorphic structures modeled after hyperquadrics Tohoku Math. J. (2) 1982 587 629
[17] Stability of Einstein-Hermitian vector bundles Manuscripta Math. 1983 245 257
[18] Polynômes de Bernstein-Sato et cohomologie évanescente 1983 243 267
[19] On the Chern numbers of surfaces of general type Invent. Math. 1977 225 237
[20] The maximal number of quotient singularities on surfaces with given numerical invariants Math. Ann. 1984 159 171
[21] Compactifications of symmetric spaces. II. The Cartan domains Amer. J. Math. 1964 358 378
[22] , Geometric invariant theory 1982
[23] , Stable and unitary vector bundles on a compact Riemann surface Ann. of Math. (2) 1965 540 567
[24] Foundations of global non-linear analysis 1968
[25] Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319
[26] Complete characterization of holomorphic chains of codimension one Math. Ann. 1986 233 256
[27] Yang-Mills theory and uniformization Lett. Math. Phys. 1987 371 377
[28] , On the existence of Hermitian-Yang-Mills connections in stable vector bundles Comm. Pure Appl. Math. 1986
[29] Calabiâs conjecture and some new results in algebraic geometry Proc. Nat. Acad. Sci. U.S.A. 1977 1798 1799
[30] Hodge theory with degenerating coefficients. ð¿â cohomology in the Poincaré metric Ann. of Math. (2) 1979 415 476
[31] Curvature and stability of vector bundles Proc. Japan Acad. Ser. A Math. Sci. 1982 158 162
[32] Chernklassen von Hermite-Einstein-Vektorbündeln Math. Ann. 1982 133 141
[33] , Restriction of stable sheaves and representations of the fundamental group Invent. Math. 1984 163 172
[34] Stable vector bundles on algebraic surfaces Nagoya Math. J. 1972 29 48
Cité par Sources :