Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization
Journal of the American Mathematical Society, Tome 01 (1988) no. 4, pp. 867-918

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1988_0944577_9,
     author = {Simpson, Carlos T.},
     title = {Constructing variations of {Hodge} structure using {Yang-Mills} theory and applications to uniformization},
     journal = {Journal of the American Mathematical Society},
     pages = {867--918},
     publisher = {mathdoc},
     volume = {01},
     number = {4},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0944577-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0944577-9/}
}
TY  - JOUR
AU  - Simpson, Carlos T.
TI  - Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 867
EP  - 918
VL  - 01
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0944577-9/
DO  - 10.1090/S0894-0347-1988-0944577-9
ID  - 10_1090_S0894_0347_1988_0944577_9
ER  - 
%0 Journal Article
%A Simpson, Carlos T.
%T Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization
%J Journal of the American Mathematical Society
%D 1988
%P 867-918
%V 01
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0944577-9/
%R 10.1090/S0894-0347-1988-0944577-9
%F 10_1090_S0894_0347_1988_0944577_9
Simpson, Carlos T. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. Journal of the American Mathematical Society, Tome 01 (1988) no. 4, pp. 867-918. doi: 10.1090/S0894-0347-1988-0944577-9

[1] Ahlfors, Lars V. An extension of Schwarz’s lemma Trans. Amer. Math. Soc. 1938 359 364

[2] Aubin, Thierry Sur la fonction exponentielle C. R. Acad. Sci. Paris Sér. A-B 1970

[3] Corlette, Kevin Flat 𝐺-bundles with canonical metrics J. Differential Geom. 1988 361 382

[4] Cornalba, Maurizio, Griffiths, Phillip Analytic cycles and vector bundles on non-compact algebraic varieties Invent. Math. 1975 1 106

[5] Deligne, P. Un théorème de finitude pour la monodromie 1987 1 19

[6] Donaldson, S. K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles Proc. London Math. Soc. (3) 1985 1 26

[7] Donaldson, S. K. Infinite determinants, stable bundles and curvature Duke Math. J. 1987 231 247

[8] Donaldson, S. K. Twisted harmonic maps and the self-duality equations Proc. London Math. Soc. (3) 1987 127 131

[9] Topics in transcendental algebraic geometry 1984

[10] Griffiths, Phillip, Schmid, Wilfried Locally homogeneous complex manifolds Acta Math. 1969 253 302

[11] Hamilton, Richard S. Harmonic maps of manifolds with boundary 1975

[12] Hitchin, N. J. The self-duality equations on a Riemann surface Proc. London Math. Soc. (3) 1987 59 126

[13] Kashiwara, M. Vanishing cycle sheaves and holonomic systems of differential equations 1983 134 142

[14] Kajdan, D. A. On arithmetic varieties 1975 151 217

[15] Kobayashi, Ryoichi Einstein-Kaehler metrics on open algebraic surfaces of general type Tohoku Math. J. (2) 1985 43 77

[16] Kobayashi, Shoshichi, Ochiai, Takushiro Holomorphic structures modeled after hyperquadrics Tohoku Math. J. (2) 1982 587 629

[17] Lã¼Bke, Martin Stability of Einstein-Hermitian vector bundles Manuscripta Math. 1983 245 257

[18] Malgrange, B. Polynômes de Bernstein-Sato et cohomologie évanescente 1983 243 267

[19] Miyaoka, Yoichi On the Chern numbers of surfaces of general type Invent. Math. 1977 225 237

[20] Miyaoka, Yoichi The maximal number of quotient singularities on surfaces with given numerical invariants Math. Ann. 1984 159 171

[21] Moore, Calvin C. Compactifications of symmetric spaces. II. The Cartan domains Amer. J. Math. 1964 358 378

[22] Mumford, David, Fogarty, John Geometric invariant theory 1982

[23] Narasimhan, M. S., Seshadri, C. S. Stable and unitary vector bundles on a compact Riemann surface Ann. of Math. (2) 1965 540 567

[24] Palais, Richard S. Foundations of global non-linear analysis 1968

[25] Schmid, Wilfried Variation of Hodge structure: the singularities of the period mapping Invent. Math. 1973 211 319

[26] Shiffman, Bernard Complete characterization of holomorphic chains of codimension one Math. Ann. 1986 233 256

[27] Simpson, Carlos T. Yang-Mills theory and uniformization Lett. Math. Phys. 1987 371 377

[28] Uhlenbeck, K., Yau, S.-T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles Comm. Pure Appl. Math. 1986

[29] Yau, Shing Tung Calabi’s conjecture and some new results in algebraic geometry Proc. Nat. Acad. Sci. U.S.A. 1977 1798 1799

[30] Zucker, Steven Hodge theory with degenerating coefficients. 𝐿₂ cohomology in the Poincaré metric Ann. of Math. (2) 1979 415 476

[31] Kobayashi, Shoshichi Curvature and stability of vector bundles Proc. Japan Acad. Ser. A Math. Sci. 1982 158 162

[32] Lã¼Bke, Martin Chernklassen von Hermite-Einstein-Vektorbündeln Math. Ann. 1982 133 141

[33] Mehta, V. B., Ramanathan, A. Restriction of stable sheaves and representations of the fundamental group Invent. Math. 1984 163 172

[34] Takemoto, Fumio Stable vector bundles on algebraic surfaces Nagoya Math. J. 1972 29 48

Cité par Sources :