The invariant trace formula. II. Global theory
Journal of the American Mathematical Society, Tome 01 (1988) no. 3, pp. 501-554 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

@article{10_1090_S0894_0347_1988_0939691_8,
     author = {Arthur, James},
     title = {The invariant trace formula. {II.} {Global} theory},
     journal = {Journal of the American Mathematical Society},
     pages = {501--554},
     year = {1988},
     volume = {01},
     number = {3},
     doi = {10.1090/S0894-0347-1988-0939691-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0939691-8/}
}
TY  - JOUR
AU  - Arthur, James
TI  - The invariant trace formula. II. Global theory
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 501
EP  - 554
VL  - 01
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0939691-8/
DO  - 10.1090/S0894-0347-1988-0939691-8
ID  - 10_1090_S0894_0347_1988_0939691_8
ER  - 
%0 Journal Article
%A Arthur, James
%T The invariant trace formula. II. Global theory
%J Journal of the American Mathematical Society
%D 1988
%P 501-554
%V 01
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0939691-8/
%R 10.1090/S0894-0347-1988-0939691-8
%F 10_1090_S0894_0347_1988_0939691_8
Arthur, James. The invariant trace formula. II. Global theory. Journal of the American Mathematical Society, Tome 01 (1988) no. 3, pp. 501-554. doi: 10.1090/S0894-0347-1988-0939691-8

[1] Arthur, James G. A trace formula for reductive groups. I. Terms associated to classes in 𝐺(𝑄) Duke Math. J. 1978 911 952

[2] Arthur, James, Clozel, Laurent Simple algebras, base change, and the advanced theory of the trace formula 1989

[3] Bernstein, Joseph N. 𝑃-invariant distributions on 𝐺𝐿(𝑁) and the classification of unitary representations of 𝐺𝐿(𝑁) (non-Archimedean case) 1984 50 102

[4] Bernstein, J. N. Le “centre” de Bernstein 1984 1 32

[5] Bernstein, J., Deligne, P., Kazhdan, D. Trace Paley-Wiener theorem for reductive 𝑝-adic groups J. Analyse Math. 1986 180 192

[6] Clozel, L., Delorme, P. Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs Invent. Math. 1984 427 453

[7] Harish-Chandra Spherical functions on a semisimple Lie group. I Amer. J. Math. 1958 241 310

[8] Kazhdan, David Cuspidal geometry of 𝑝-adic groups J. Analyse Math. 1986 1 36

[9] Kottwitz, Robert E. Stable trace formula: elliptic singular terms Math. Ann. 1986 365 399

[10] Langlands, Robert P. On the functional equations satisfied by Eisenstein series 1976

[11] Raïs, M. Action de certains groupes dans des espaces de fonctions 𝐶^{∞} 1975 147 150

[12] Rogawski, J. D. Trace Paley-Wiener theorem in the twisted case Trans. Amer. Math. Soc. 1988 215 229

[13] Vogan, David A., Jr. The unitary dual of 𝐺𝐿(𝑛) over an Archimedean field Invent. Math. 1986 449 505

Cité par Sources :