Local smoothing properties of dispersive equations
Journal of the American Mathematical Society, Tome 01 (1988) no. 2, pp. 413-439

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1988_0928265_0,
     author = {Constantin, P. and Saut, J.-C.},
     title = {Local smoothing properties of dispersive equations},
     journal = {Journal of the American Mathematical Society},
     pages = {413--439},
     publisher = {mathdoc},
     volume = {01},
     number = {2},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0928265-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0928265-0/}
}
TY  - JOUR
AU  - Constantin, P.
AU  - Saut, J.-C.
TI  - Local smoothing properties of dispersive equations
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 413
EP  - 439
VL  - 01
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0928265-0/
DO  - 10.1090/S0894-0347-1988-0928265-0
ID  - 10_1090_S0894_0347_1988_0928265_0
ER  - 
%0 Journal Article
%A Constantin, P.
%A Saut, J.-C.
%T Local smoothing properties of dispersive equations
%J Journal of the American Mathematical Society
%D 1988
%P 413-439
%V 01
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0928265-0/
%R 10.1090/S0894-0347-1988-0928265-0
%F 10_1090_S0894_0347_1988_0928265_0
Constantin, P.; Saut, J.-C. Local smoothing properties of dispersive equations. Journal of the American Mathematical Society, Tome 01 (1988) no. 2, pp. 413-439. doi: 10.1090/S0894-0347-1988-0928265-0

[1] Balabane, M., Emamirad, H. A. 𝐿^{𝑝} estimates for Schrödinger evolution equations Trans. Amer. Math. Soc. 1985 357 373

[2] Cazenave, Thierry, Weissler, Fred B. The Cauchy problem for the nonlinear Schrödinger equation in 𝐻¹ Manuscripta Math. 1988 477 494

[3] Constantin, Peter, Saut, Jean-Claude Effets régularisants locaux pour des équations dispersives générales C. R. Acad. Sci. Paris Sér. I Math. 1987 407 410

[4] Gear, J. A., Grimshaw, R. Weak and strong interactions between internal solitary waves Stud. Appl. Math. 1984 235 258

[5] Ginibre, J., Velo, G. The global Cauchy problem for the nonlinear Schrödinger equation revisited Ann. Inst. H. Poincaré Anal. Non Linéaire 1985 309 327

[6] Hayashi, Nakao, Nakamitsu, Kuniaki, Tsutsumi, Masayoshi On solutions of the initial value problem for the nonlinear Schrödinger equations J. Funct. Anal. 1987 218 245

[7] Hayashi, Nakao, Nakamitsu, Kuniaki, Tsutsumi, Masayoshi On solutions of the initial value problem for the nonlinear Schrödinger equations in one space dimension Math. Z. 1986 637 650

[8] Kato, Tosio On the Cauchy problem for the (generalized) Korteweg-de Vries equation 1983 93 128

[9] Liu, Antony K. Interaction of solitary waves in stratified fluids 1984 108 117

[10] Olver, Peter J. Hamiltonian and non-Hamiltonian models for water waves 1984 273 290

[11] Saut, J.-C. Sur quelques généralisations de l’équation de Korteweg-de Vries J. Math. Pures Appl. (9) 1979 21 61

[12] Stein, Elias M. Singular integrals and differentiability properties of functions 1970

[13] Strichartz, Robert S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations Duke Math. J. 1977 705 714

[14] Whitham, G. B. Linear and nonlinear waves 1974

[15] Yajima, Kenji Existence of solutions for Schrödinger evolution equations Comm. Math. Phys. 1987 415 426

Cité par Sources :