Hadwiger’s transversal theorem in higher dimensions
Journal of the American Mathematical Society, Tome 01 (1988) no. 2, pp. 301-309

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1988_0928260_1,
     author = {Goodman, Jacob E. and Pollack, Richard},
     title = {Hadwiger\^a€™s transversal theorem in higher dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {301--309},
     publisher = {mathdoc},
     volume = {01},
     number = {2},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0928260-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0928260-1/}
}
TY  - JOUR
AU  - Goodman, Jacob E.
AU  - Pollack, Richard
TI  - Hadwiger’s transversal theorem in higher dimensions
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 301
EP  - 309
VL  - 01
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0928260-1/
DO  - 10.1090/S0894-0347-1988-0928260-1
ID  - 10_1090_S0894_0347_1988_0928260_1
ER  - 
%0 Journal Article
%A Goodman, Jacob E.
%A Pollack, Richard
%T Hadwiger’s transversal theorem in higher dimensions
%J Journal of the American Mathematical Society
%D 1988
%P 301-309
%V 01
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0928260-1/
%R 10.1090/S0894-0347-1988-0928260-1
%F 10_1090_S0894_0347_1988_0928260_1
Goodman, Jacob E.; Pollack, Richard. Hadwiger’s transversal theorem in higher dimensions. Journal of the American Mathematical Society, Tome 01 (1988) no. 2, pp. 301-309. doi: 10.1090/S0894-0347-1988-0928260-1

[1] Bland, Robert G., Las Vergnas, Michel Orientability of matroids J. Combinatorial Theory Ser. B 1978 94 123

[2] Grã¼Nbaum, B. On a theorem of L. A. Santaló Pacific J. Math. 1955 351 359

[3] Goodman, Jacob E., Pollack, Richard Multidimensional sorting SIAM J. Comput. 1983 484 507

[4] Hadwiger, H. Ueber Eibereiche mit gemeinsamer Treffgeraden Portugal. Math. 1957 23 29

[5] Klee, V. L., Jr. Common secants for plane convex sets Proc. Amer. Math. Soc. 1954 639 641

[6] Valentine, F. A. The dual cone and Helly type theorems 1963 473 493

Cité par Sources :