Flip theorem and the existence of minimal models for 3-folds
Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 117-253 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

@article{10_1090_S0894_0347_1988_0924704_X,
     author = {Mori, Shigefumi},
     title = {Flip theorem and the existence of minimal models for 3-folds},
     journal = {Journal of the American Mathematical Society},
     pages = {117--253},
     year = {1988},
     volume = {01},
     number = {1},
     doi = {10.1090/S0894-0347-1988-0924704-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924704-X/}
}
TY  - JOUR
AU  - Mori, Shigefumi
TI  - Flip theorem and the existence of minimal models for 3-folds
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 117
EP  - 253
VL  - 01
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924704-X/
DO  - 10.1090/S0894-0347-1988-0924704-X
ID  - 10_1090_S0894_0347_1988_0924704_X
ER  - 
%0 Journal Article
%A Mori, Shigefumi
%T Flip theorem and the existence of minimal models for 3-folds
%J Journal of the American Mathematical Society
%D 1988
%P 117-253
%V 01
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924704-X/
%R 10.1090/S0894-0347-1988-0924704-X
%F 10_1090_S0894_0347_1988_0924704_X
Mori, Shigefumi. Flip theorem and the existence of minimal models for 3-folds. Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 117-253. doi: 10.1090/S0894-0347-1988-0924704-X

[1] Artin, M. On the solutions of analytic equations Invent. Math. 1968 277 291

[2] Artin, M. Algebraic approximation of structures over complete local rings Inst. Hautes Études Sci. Publ. Math. 1969 23 58

[3] Benveniste, X. Sur l’anneau canonique de certaines variétés de dimension 3 Invent. Math. 1983 157 164

[4] Benveniste, X. Sur le cone des 1-cycles effectifs en dimension 3 Math. Ann. 1985 257 265

[5] Bingener, Jürgen, Storch, Uwe Zur Berechnung der Divisorenklassengruppen kompletter lokaler Ringe Nova Acta Leopoldina (N.F.) 1981 7 63

[6] Elkik, Renée Singularités rationnelles et déformations Invent. Math. 1978 139 147

[7] Elkik, Renée Rationalité des singularités canoniques Invent. Math. 1981 1 6

[8] Flenner, Hubert Rationale quasihomogene Singularitäten Arch. Math. (Basel) 1981 35 44

[9] Francia, P. Some remarks on minimal models. I Compositio Math. 1980 301 313

[10] Fujita, Takao Zariski decomposition and canonical rings of elliptic threefolds J. Math. Soc. Japan 1986 19 37

[11] Godement, Roger Topologie algébrique et théorie des faisceaux 1958

[12] Grauert, Hans On Levi’s problem and the imbedding of real-analytic manifolds Ann. of Math. (2) 1958 460 472

[13] Grauert, Hans, Riemenschneider, Oswald Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen Invent. Math. 1970 263 292

[14] Iskovskih, V. A. Minimal models of rational surfaces over arbitrary fields Izv. Akad. Nauk SSSR Ser. Mat. 1979

[15] Kawamata, Yujiro On the finiteness of generators of a pluricanonical ring for a 3-fold of general type Amer. J. Math. 1984 1503 1512

[16] Kawamata, Yujiro, Matsuda, Katsumi, Matsuki, Kenji Introduction to the minimal model problem 1987 283 360

[17] Kleiman, Steven L. Toward a numerical theory of ampleness Ann. of Math. (2) 1966 293 344

[18] Kollár, János Higher direct images of dualizing sheaves. I Ann. of Math. (2) 1986 11 42

[19] Kollár, János Flops Nagoya Math. J. 1989 15 36

[20] Kulikov, Vik. S. Degenerations of 𝐾3 surfaces and Enriques surfaces Uspehi Mat. Nauk 1977 167 168

[21] Manin, Ju. I. Rational surfaces over perfect fields Inst. Hautes Études Sci. Publ. Math. 1966 55 113

[22] Miyanishi, Masayoshi Projective degenerations of surfaces according to S. Tsunoda 1987 415 447

[23] Miyaoka, Yoichi Deformations of a morphism along a foliation and applications 1987 245 268

[24] Miyaoka, Yoichi The Chern classes and Kodaira dimension of a minimal variety 1987 449 476

[25] Miyaoka, Yoichi, Mori, Shigefumi A numerical criterion for uniruledness Ann. of Math. (2) 1986 65 69

[26] Mori, Shigefumi Projective manifolds with ample tangent bundles Ann. of Math. (2) 1979 593 606

[27] Mori, Shigefumi Threefolds whose canonical bundles are not numerically effective Ann. of Math. (2) 1982 133 176

[28] Mori, Shigefumi On 3-dimensional terminal singularities Nagoya Math. J. 1985 43 66

[29] Mori, Shigefumi Classification of higher-dimensional varieties 1987 269 331

[30] Morrison, David R. Semistable degenerations of Enriques’ and hyperelliptic surfaces Duke Math. J. 1981 197 249

[31] Morrison, David R. A remark on: “On the plurigenera of minimal algebraic 3-folds with 𝐾\raise3.25pt∼≈\phantom{≈}0” [Math. Ann. 275 (1986), no. 4, 539–546 Math. Ann. 1986 547 553

[32] Morrison, David R., Stevens, Glenn Terminal quotient singularities in dimensions three and four Proc. Amer. Math. Soc. 1984 15 20

[33] Nakayama, Noboru Invariance of the plurigenera of algebraic varieties under minimal model conjectures Topology 1986 237 251

[34] Persson, Ulf, Pinkham, Henry Degeneration of surfaces with trivial canonical bundle Ann. of Math. (2) 1981 45 66

[35] Reid, Miles Minimal models of canonical 3-folds 1983 131 180

[36] Reid, Miles Decomposition of toric morphisms 1983 395 418

[37] Reid, Miles Tendencious survey of 3-folds 1987 333 344

[38] Shokurov, V. V. A nonvanishing theorem Izv. Akad. Nauk SSSR Ser. Mat. 1985 635 651

[39] Tsunoda, Shuichiro Degenerations of surfaces 1987 755 764

[40] Wahl, Jonathan M. Equisingular deformations of normal surface singularities. I Ann. of Math. (2) 1976 325 356

[41] Wilson, P. M. H. Towards birational classification of algebraic varieties Bull. London Math. Soc. 1987 1 48

Cité par Sources :