Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_1988_0924701_4,
author = {Zimmer, Robert J.},
title = {Arithmeticity of holonomy groups of {Lie} foliations},
journal = {Journal of the American Mathematical Society},
pages = {35--58},
publisher = {mathdoc},
volume = {01},
number = {1},
year = {1988},
doi = {10.1090/S0894-0347-1988-0924701-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924701-4/}
}
TY - JOUR AU - Zimmer, Robert J. TI - Arithmeticity of holonomy groups of Lie foliations JO - Journal of the American Mathematical Society PY - 1988 SP - 35 EP - 58 VL - 01 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924701-4/ DO - 10.1090/S0894-0347-1988-0924701-4 ID - 10_1090_S0894_0347_1988_0924701_4 ER -
%0 Journal Article %A Zimmer, Robert J. %T Arithmeticity of holonomy groups of Lie foliations %J Journal of the American Mathematical Society %D 1988 %P 35-58 %V 01 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924701-4/ %R 10.1090/S0894-0347-1988-0924701-4 %F 10_1090_S0894_0347_1988_0924701_4
Zimmer, Robert J. Arithmeticity of holonomy groups of Lie foliations. Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 35-58. doi: 10.1090/S0894-0347-1988-0924701-4
[1] Finitely generated subgroups of ðºð¿â 1984 127 136
[2] Transversely homogeneous foliations Ann. Inst. Fourier (Grenoble) 1979
[3] Density properties for certain subgroups of semi-simple groups without compact components Ann. of Math. (2) 1960 179 188
[4] Feuilletages riemanniens à croissance polynômiale Comment. Math. Helv. 1988 1 20
[5] , Relations dâéquivalence moyennables sur les groupes de Lie C. R. Acad. Sci. Paris Sér. I Math. 1985 677 680
[6] , , An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981
[7] Flots riemanniens Astérisque 1984 31 52
[8] Sur les feuilletages de Lie C. R. Acad. Sci. Paris Sér. A-B 1971
[9] , Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324
[10] , , Orbit structure and countable sections for actions of continuous groups Adv. in Math. 1978 186 230
[11] Groupes dâholonomie des feuilletages de Lie Nederl. Akad. Wetensch. Indag. Math. 1985 173 182
[12] Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes Comment. Math. Helv. 1958 248 329
[13] On the existence and irreducibility of certain series of representations Bull. Amer. Math. Soc. 1969 627 642
[14] Finiteness of quotient groups of discrete subgroups Funktsional. Anal. i Prilozhen. 1979 28 39
[15] Géométrie globale des feuilletages riemanniens Nederl. Akad. Wetensch. Indag. Math. 1982 45 76
[16] Amenable subgroups of semisimple groups and proximal flows Israel J. Math. 1979
[17] Discrete subgroups of Lie groups 1972
[18] Virtual groups and group actions Advances in Math. 1971
[19] Sur certaines propriétés topologiques des variétés feuilletées 1952
[20] Foliated manifolds with bundle-like metrics Ann. of Math. (2) 1959 119 132
[21] Cocycles on ergodic transformation groups 1977 202
[22] Amenable ergodic group actions and an application to Poisson boundaries of random walks J. Functional Analysis 1978 350 372
[23] Strong rigidity for ergodic actions of semisimple Lie groups Ann. of Math. (2) 1980 511 529
[24] Orbit equivalence and rigidity of ergodic actions of Lie groups Ergodic Theory Dynam. Systems 1981 237 253
[25] Ergodic theory and semisimple groups 1984
[26] Kazhdan groups acting on compact manifolds Invent. Math. 1984 425 436
[27] Group representations, ergodic theory, operator algebras, and mathematical physics 1987
[28] Amenable actions and dense subgroups of Lie groups J. Funct. Anal. 1987 58 64
Cité par Sources :