Arithmeticity of holonomy groups of Lie foliations
Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 35-58

Voir la notice de l'article provenant de la source American Mathematical Society

@article{10_1090_S0894_0347_1988_0924701_4,
     author = {Zimmer, Robert J.},
     title = {Arithmeticity of holonomy groups of {Lie} foliations},
     journal = {Journal of the American Mathematical Society},
     pages = {35--58},
     publisher = {mathdoc},
     volume = {01},
     number = {1},
     year = {1988},
     doi = {10.1090/S0894-0347-1988-0924701-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924701-4/}
}
TY  - JOUR
AU  - Zimmer, Robert J.
TI  - Arithmeticity of holonomy groups of Lie foliations
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 35
EP  - 58
VL  - 01
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924701-4/
DO  - 10.1090/S0894-0347-1988-0924701-4
ID  - 10_1090_S0894_0347_1988_0924701_4
ER  - 
%0 Journal Article
%A Zimmer, Robert J.
%T Arithmeticity of holonomy groups of Lie foliations
%J Journal of the American Mathematical Society
%D 1988
%P 35-58
%V 01
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924701-4/
%R 10.1090/S0894-0347-1988-0924701-4
%F 10_1090_S0894_0347_1988_0924701_4
Zimmer, Robert J. Arithmeticity of holonomy groups of Lie foliations. Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 35-58. doi: 10.1090/S0894-0347-1988-0924701-4

[1] Bass, Hyman Finitely generated subgroups of 𝐺𝐿₂ 1984 127 136

[2] Blumenthal, Robert A. Transversely homogeneous foliations Ann. Inst. Fourier (Grenoble) 1979

[3] Borel, Armand Density properties for certain subgroups of semi-simple groups without compact components Ann. of Math. (2) 1960 179 188

[4] Carriã¨Re, Yves Feuilletages riemanniens à croissance polynômiale Comment. Math. Helv. 1988 1 20

[5] Ghys, ÉTienne, Carriã¨Re, Yves Relations d’équivalence moyennables sur les groupes de Lie C. R. Acad. Sci. Paris Sér. I Math. 1985 677 680

[6] Connes, A., Feldman, J., Weiss, B. An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981

[7] Carriã¨Re, Yves Flots riemanniens Astérisque 1984 31 52

[8] Fedida, Edmond Sur les feuilletages de Lie C. R. Acad. Sci. Paris Sér. A-B 1971

[9] Feldman, Jacob, Moore, Calvin C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324

[10] Feldman, Jacob, Hahn, Peter, Moore, Calvin C. Orbit structure and countable sections for actions of continuous groups Adv. in Math. 1978 186 230

[11] Ghys, ÉTienne Groupes d’holonomie des feuilletages de Lie Nederl. Akad. Wetensch. Indag. Math. 1985 173 182

[12] Haefliger, Andr㩠Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes Comment. Math. Helv. 1958 248 329

[13] Kostant, Bertram On the existence and irreducibility of certain series of representations Bull. Amer. Math. Soc. 1969 627 642

[14] Margulis, G. A. Finiteness of quotient groups of discrete subgroups Funktsional. Anal. i Prilozhen. 1979 28 39

[15] Molino, Pierre Géométrie globale des feuilletages riemanniens Nederl. Akad. Wetensch. Indag. Math. 1982 45 76

[16] Moore, Calvin C. Amenable subgroups of semisimple groups and proximal flows Israel J. Math. 1979

[17] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[18] Ramsay, Arlan Virtual groups and group actions Advances in Math. 1971

[19] Reeb, Georges Sur certaines propriétés topologiques des variétés feuilletées 1952

[20] Reinhart, Bruce L. Foliated manifolds with bundle-like metrics Ann. of Math. (2) 1959 119 132

[21] Schmidt, Klaus Cocycles on ergodic transformation groups 1977 202

[22] Zimmer, Robert J. Amenable ergodic group actions and an application to Poisson boundaries of random walks J. Functional Analysis 1978 350 372

[23] Zimmer, Robert J. Strong rigidity for ergodic actions of semisimple Lie groups Ann. of Math. (2) 1980 511 529

[24] Zimmer, Robert J. Orbit equivalence and rigidity of ergodic actions of Lie groups Ergodic Theory Dynam. Systems 1981 237 253

[25] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

[26] Zimmer, R. J. Kazhdan groups acting on compact manifolds Invent. Math. 1984 425 436

[27] Group representations, ergodic theory, operator algebras, and mathematical physics 1987

[28] Zimmer, Robert J. Amenable actions and dense subgroups of Lie groups J. Funct. Anal. 1987 58 64

Cité par Sources :