@article{10_1090_S0894_0347_1988_0924700_2,
author = {De Concini, C. and Lusztig, G. and Procesi, C.},
title = {Homology of the zero-set of a nilpotent vector field on a flag manifold},
journal = {Journal of the American Mathematical Society},
pages = {15--34},
year = {1988},
volume = {01},
number = {1},
doi = {10.1090/S0894-0347-1988-0924700-2},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924700-2/}
}
TY - JOUR AU - De Concini, C. AU - Lusztig, G. AU - Procesi, C. TI - Homology of the zero-set of a nilpotent vector field on a flag manifold JO - Journal of the American Mathematical Society PY - 1988 SP - 15 EP - 34 VL - 01 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924700-2/ DO - 10.1090/S0894-0347-1988-0924700-2 ID - 10_1090_S0894_0347_1988_0924700_2 ER -
%0 Journal Article %A De Concini, C. %A Lusztig, G. %A Procesi, C. %T Homology of the zero-set of a nilpotent vector field on a flag manifold %J Journal of the American Mathematical Society %D 1988 %P 15-34 %V 01 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924700-2/ %R 10.1090/S0894-0347-1988-0924700-2 %F 10_1090_S0894_0347_1988_0924700_2
De Concini, C.; Lusztig, G.; Procesi, C. Homology of the zero-set of a nilpotent vector field on a flag manifold. Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 15-34. doi: 10.1090/S0894-0347-1988-0924700-2
[1] , Classes of unipotent elements in simple algebraic groups. I Math. Proc. Cambridge Philos. Soc. 1976 401 425
[2] , Linearizing certain reductive group actions Trans. Amer. Math. Soc. 1985 463 482
[3] , Green functions of finite Chevalley groups of type 𝐸_{𝑛} (𝑛 J. Algebra 1984 584 614
[4] Some theorems on actions of algebraic groups Ann. of Math. (2) 1973 480 497
[5] Intersection theory 1984
[6] “Lagrangian” construction for representations of Hecke algebras Adv. in Math. 1987 100 112
[7] , Proof of the Deligne-Langlands conjecture for Hecke algebras Invent. Math. 1987 153 215
[8] Some examples of square integrable representations of semisimple 𝑝-adic groups Trans. Amer. Math. Soc. 1983 623 653
[9] On the Green polynomials of classical groups Invent. Math. 1983 239 267
[10] Classes unipotentes et sous-groupes de Borel 1982
[11] On unipotent and nilpotent elements of groups of type 𝐸₆ J. London Math. Soc. (2) 1983 413 420
[12] Trigonometric sums, Green functions of finite groups and representations of Weyl groups Invent. Math. 1976 173 207
[13] , Conjugacy classes 1970 167 266
Cité par Sources :