Homology of the zero-set of a nilpotent vector field on a flag manifold
Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 15-34 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

@article{10_1090_S0894_0347_1988_0924700_2,
     author = {De Concini, C. and Lusztig, G. and Procesi, C.},
     title = {Homology of the zero-set of a nilpotent vector field on a flag manifold},
     journal = {Journal of the American Mathematical Society},
     pages = {15--34},
     year = {1988},
     volume = {01},
     number = {1},
     doi = {10.1090/S0894-0347-1988-0924700-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924700-2/}
}
TY  - JOUR
AU  - De Concini, C.
AU  - Lusztig, G.
AU  - Procesi, C.
TI  - Homology of the zero-set of a nilpotent vector field on a flag manifold
JO  - Journal of the American Mathematical Society
PY  - 1988
SP  - 15
EP  - 34
VL  - 01
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924700-2/
DO  - 10.1090/S0894-0347-1988-0924700-2
ID  - 10_1090_S0894_0347_1988_0924700_2
ER  - 
%0 Journal Article
%A De Concini, C.
%A Lusztig, G.
%A Procesi, C.
%T Homology of the zero-set of a nilpotent vector field on a flag manifold
%J Journal of the American Mathematical Society
%D 1988
%P 15-34
%V 01
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-1988-0924700-2/
%R 10.1090/S0894-0347-1988-0924700-2
%F 10_1090_S0894_0347_1988_0924700_2
De Concini, C.; Lusztig, G.; Procesi, C. Homology of the zero-set of a nilpotent vector field on a flag manifold. Journal of the American Mathematical Society, Tome 01 (1988) no. 1, pp. 15-34. doi: 10.1090/S0894-0347-1988-0924700-2

[1] Bala, P., Carter, R. W. Classes of unipotent elements in simple algebraic groups. I Math. Proc. Cambridge Philos. Soc. 1976 401 425

[2] Bass, H., Haboush, W. Linearizing certain reductive group actions Trans. Amer. Math. Soc. 1985 463 482

[3] Beynon, W. M., Spaltenstein, N. Green functions of finite Chevalley groups of type 𝐸_{𝑛} (𝑛 J. Algebra 1984 584 614

[4] Białynicki-Birula, A. Some theorems on actions of algebraic groups Ann. of Math. (2) 1973 480 497

[5] Fulton, William Intersection theory 1984

[6] Ginsburg, V. “Lagrangian” construction for representations of Hecke algebras Adv. in Math. 1987 100 112

[7] Kazhdan, David, Lusztig, George Proof of the Deligne-Langlands conjecture for Hecke algebras Invent. Math. 1987 153 215

[8] Lusztig, George Some examples of square integrable representations of semisimple 𝑝-adic groups Trans. Amer. Math. Soc. 1983 623 653

[9] Shoji, T. On the Green polynomials of classical groups Invent. Math. 1983 239 267

[10] Spaltenstein, Nicolas Classes unipotentes et sous-groupes de Borel 1982

[11] Spaltenstein, N. On unipotent and nilpotent elements of groups of type 𝐸₆ J. London Math. Soc. (2) 1983 413 420

[12] Springer, T. A. Trigonometric sums, Green functions of finite groups and representations of Weyl groups Invent. Math. 1976 173 207

[13] Springer, T. A., Steinberg, R. Conjugacy classes 1970 167 266

Cité par Sources :