Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_10_00670_3,
     author = {Toda, Yukinobu},
     title = {Curve counting theories via stable objects {I.} {DT/PT} correspondence},
     journal = {Journal of the American Mathematical Society},
     pages = {1119--1157},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00670-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00670-3/}
}
                      
                      
                    TY - JOUR AU - Toda, Yukinobu TI - Curve counting theories via stable objects I. DT/PT correspondence JO - Journal of the American Mathematical Society PY - 2010 SP - 1119 EP - 1157 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00670-3/ DO - 10.1090/S0894-0347-10-00670-3 ID - 10_1090_S0894_0347_10_00670_3 ER -
%0 Journal Article %A Toda, Yukinobu %T Curve counting theories via stable objects I. DT/PT correspondence %J Journal of the American Mathematical Society %D 2010 %P 1119-1157 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00670-3/ %R 10.1090/S0894-0347-10-00670-3 %F 10_1090_S0894_0347_10_00670_3
Toda, Yukinobu. Curve counting theories via stable objects I. DT/PT correspondence. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1119-1157. doi: 10.1090/S0894-0347-10-00670-3
[1] , Symmetric obstruction theories and Hilbert schemes of points on threefolds Algebra Number Theory 2008 313 345
[2] Stability conditions on triangulated categories Ann. of Math. (2) 2007 317 345
[3] Stability conditions on ð¾3 surfaces Duke Math. J. 2008 241 291
[4] On the cohomology of Hilbert schemes of points J. Algebraic Geom. 1996 479 511
[5] Three-dimensional flops and noncommutative rings Duke Math. J. 2004 423 455
[6] , , Tilting in abelian categories and quasitilted algebras Mem. Amer. Math. Soc. 1996
[7] Configurations in abelian categories. I. Basic properties and moduli stacks Adv. Math. 2006 194 255
[8] Configurations in abelian categories. II. Ringel-Hall algebras Adv. Math. 2007 635 706
[9] Configurations in abelian categories. III. Stability conditions and identities Adv. Math. 2007 153 219
[10] Motivic invariants of Artin stacks and âstack functionsâ Q. J. Math. 2007 345 392
[11] Configurations in abelian categories. IV. Invariants and changing stability conditions Adv. Math. 2008 125 204
[12] ð¡-structures on the derived categories of holonomic ð-modules and coherent ðª-modules Mosc. Math. J. 2004
[13] , Algebraic cobordism revisited Invent. Math. 2009 63 130
[14] Zero dimensional Donaldson-Thomas invariants of threefolds Geom. Topol. 2006 2117 2171
[15] , On the Euler numbers of certain moduli spaces of curves and points Comm. Anal. Geom. 2006 387 410
[16] Moduli of complexes on a proper morphism J. Algebraic Geom. 2006 175 206
[17] , , , Gromov-Witten theory and Donaldson-Thomas theory. I Compos. Math. 2006 1263 1285
[18] , Curve counting via stable pairs in the derived category Invent. Math. 2009 407 447
[19] A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on ð¾3 fibrations J. Differential Geom. 2000 367 438
[20] Limit stable objects on Calabi-Yau 3-folds Duke Math. J. 2009 157 208
[21] Moduli stacks and invariants of semistable objects on ð¾3 surfaces Adv. Math. 2008 2736 2781
Cité par Sources :