Curve counting theories via stable objects I. DT/PT correspondence
Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1119-1157

Voir la notice de l'article provenant de la source American Mathematical Society

The Donaldson-Thomas invariant is a curve counting invariant on Calabi-Yau 3-folds via ideal sheaves. Another counting invariant via stable pairs is introduced by Pandharipande and Thomas, which counts pairs of curves and divisors on them. These two theories are conjecturally equivalent via generating functions, called DT/PT correspondence. In this paper, we show the Euler characteristic version of DT/PT correspondence, using the notion of weak stability conditions and the wall-crossing formula.
DOI : 10.1090/S0894-0347-10-00670-3

Toda, Yukinobu 1

1 Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, Kashiwano-ha 5-1-5, Kashiwa City, Chiba 277-8582, Japan
@article{10_1090_S0894_0347_10_00670_3,
     author = {Toda, Yukinobu},
     title = {Curve counting theories via stable objects {I.} {DT/PT} correspondence},
     journal = {Journal of the American Mathematical Society},
     pages = {1119--1157},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00670-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00670-3/}
}
TY  - JOUR
AU  - Toda, Yukinobu
TI  - Curve counting theories via stable objects I. DT/PT correspondence
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 1119
EP  - 1157
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00670-3/
DO  - 10.1090/S0894-0347-10-00670-3
ID  - 10_1090_S0894_0347_10_00670_3
ER  - 
%0 Journal Article
%A Toda, Yukinobu
%T Curve counting theories via stable objects I. DT/PT correspondence
%J Journal of the American Mathematical Society
%D 2010
%P 1119-1157
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00670-3/
%R 10.1090/S0894-0347-10-00670-3
%F 10_1090_S0894_0347_10_00670_3
Toda, Yukinobu. Curve counting theories via stable objects I. DT/PT correspondence. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 1119-1157. doi: 10.1090/S0894-0347-10-00670-3

[1] Behrend, Kai, Fantechi, Barbara Symmetric obstruction theories and Hilbert schemes of points on threefolds Algebra Number Theory 2008 313 345

[2] Bridgeland, Tom Stability conditions on triangulated categories Ann. of Math. (2) 2007 317 345

[3] Bridgeland, Tom Stability conditions on 𝐾3 surfaces Duke Math. J. 2008 241 291

[4] Cheah, Jan On the cohomology of Hilbert schemes of points J. Algebraic Geom. 1996 479 511

[5] Van Den Bergh, Michel Three-dimensional flops and noncommutative rings Duke Math. J. 2004 423 455

[6] Happel, Dieter, Reiten, Idun, Smalã¸, Sverre O. Tilting in abelian categories and quasitilted algebras Mem. Amer. Math. Soc. 1996

[7] Joyce, Dominic Configurations in abelian categories. I. Basic properties and moduli stacks Adv. Math. 2006 194 255

[8] Joyce, Dominic Configurations in abelian categories. II. Ringel-Hall algebras Adv. Math. 2007 635 706

[9] Joyce, Dominic Configurations in abelian categories. III. Stability conditions and identities Adv. Math. 2007 153 219

[10] Joyce, Dominic Motivic invariants of Artin stacks and ‘stack functions’ Q. J. Math. 2007 345 392

[11] Joyce, Dominic Configurations in abelian categories. IV. Invariants and changing stability conditions Adv. Math. 2008 125 204

[12] Kashiwara, Masaki 𝑡-structures on the derived categories of holonomic 𝒟-modules and coherent 𝒪-modules Mosc. Math. J. 2004

[13] Levine, M., Pandharipande, R. Algebraic cobordism revisited Invent. Math. 2009 63 130

[14] Li, Jun Zero dimensional Donaldson-Thomas invariants of threefolds Geom. Topol. 2006 2117 2171

[15] Li, Wei-Ping, Qin, Zhenbo On the Euler numbers of certain moduli spaces of curves and points Comm. Anal. Geom. 2006 387 410

[16] Lieblich, Max Moduli of complexes on a proper morphism J. Algebraic Geom. 2006 175 206

[17] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R. Gromov-Witten theory and Donaldson-Thomas theory. I Compos. Math. 2006 1263 1285

[18] Pandharipande, R., Thomas, R. P. Curve counting via stable pairs in the derived category Invent. Math. 2009 407 447

[19] Thomas, R. P. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on 𝐾3 fibrations J. Differential Geom. 2000 367 438

[20] Toda, Yukinobu Limit stable objects on Calabi-Yau 3-folds Duke Math. J. 2009 157 208

[21] Toda, Yukinobu Moduli stacks and invariants of semistable objects on 𝐾3 surfaces Adv. Math. 2008 2736 2781

Cité par Sources :