Integral transforms and Drinfeld centers in derived algebraic geometry
Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 909-966

Voir la notice de l'article provenant de la source American Mathematical Society

We study the interaction between geometric operations on stacks and algebraic operations on their categories of sheaves. We work in the general setting of derived algebraic geometry: our basic objects are derived stacks $X$ and their $\infty$-categories $\mathrm {QC}(X)$ of quasi-coherent sheaves. (When $X$ is a familiar scheme or stack, $\mathrm {QC}(X)$ is an enriched version of the usual quasi-coherent derived category $D_{qc}(X)$.) We show that for a broad class of derived stacks, called perfect stacks, algebraic and geometric operations on their categories of sheaves are compatible. We identify the category of sheaves on a fiber product with the tensor product of the categories of sheaves on the factors. We also identify the category of sheaves on a fiber product with functors between the categories of sheaves on the factors (thus realizing functors as integral transforms, generalizing a theorem of Toën for ordinary schemes). As a first application, for a perfect stack $X$, consider $\mathrm {QC}(X)$ with its usual monoidal tensor product. Then our main results imply the equivalence of the Drinfeld center (or Hochschild cohomology category) of $\mathrm {QC}(X)$, the trace (or Hochschild homology category) of $\mathrm {QC}(X)$ and the category of sheaves on the loop space of $X$. More generally, we show that the $\mathcal {E}_n$-center and the $\mathcal {E}_n$-trace (or $\mathcal {E}_n$-Hochschild cohomology and homology categories, respectively) of $\mathrm {QC}(X)$ are equivalent to the category of sheaves on the space of maps from the $n$-sphere into $X$. This directly verifies geometric instances of the categorified Deligne and Kontsevich conjectures on the structure of Hochschild cohomology. As a second application, we use our main results to calculate the Drinfeld center of categories of linear endofunctors of categories of sheaves. This provides concrete applications to the structure of Hecke algebras in geometric representation theory. Finally, we explain how the above results can be interpreted in the context of topological field theory.
DOI : 10.1090/S0894-0347-10-00669-7

Ben-Zvi, David 1 ; Francis, John 2 ; Nadler, David 2

1 Department of Mathematics, University of Texas, Austin, Texas 78712-0257
2 Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2370
@article{10_1090_S0894_0347_10_00669_7,
     author = {Ben-Zvi, David and Francis, John and Nadler, David},
     title = {Integral transforms and {Drinfeld} centers in derived algebraic geometry},
     journal = {Journal of the American Mathematical Society},
     pages = {909--966},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00669-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00669-7/}
}
TY  - JOUR
AU  - Ben-Zvi, David
AU  - Francis, John
AU  - Nadler, David
TI  - Integral transforms and Drinfeld centers in derived algebraic geometry
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 909
EP  - 966
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00669-7/
DO  - 10.1090/S0894-0347-10-00669-7
ID  - 10_1090_S0894_0347_10_00669_7
ER  - 
%0 Journal Article
%A Ben-Zvi, David
%A Francis, John
%A Nadler, David
%T Integral transforms and Drinfeld centers in derived algebraic geometry
%J Journal of the American Mathematical Society
%D 2010
%P 909-966
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00669-7/
%R 10.1090/S0894-0347-10-00669-7
%F 10_1090_S0894_0347_10_00669_7
Ben-Zvi, David; Francis, John; Nadler, David. Integral transforms and Drinfeld centers in derived algebraic geometry. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 909-966. doi: 10.1090/S0894-0347-10-00669-7

[1] Angeltveit, Vigleik The cyclic bar construction on 𝐴_{∞} 𝐻-spaces Adv. Math. 2009 1589 1610

[2] Bakalov, Bojko, Kirillov, Alexander, Jr. Lectures on tensor categories and modular functors 2001

[3] Bezrukavnikov, Roman Noncommutative counterparts of the Springer resolution 2006 1119 1144

[4] Bezrukavnikov, Roman, Finkelberg, Michael Equivariant Satake category and Kostant-Whittaker reduction Mosc. Math. J. 2008

[5] Bã¶Kstedt, Marcel, Neeman, Amnon Homotopy limits in triangulated categories Compositio Math. 1993 209 234

[6] Bondal, Alexey I., Larsen, Michael, Lunts, Valery A. Grothendieck ring of pretriangulated categories Int. Math. Res. Not. 2004 1461 1495

[7] Bondal, A., Van Den Bergh, M. Generators and representability of functors in commutative and noncommutative geometry Mosc. Math. J. 2003

[8] Chevalley, Claude Théorie des groupes de Lie. Tome II. Groupes algébriques 1951

[9] Costello, Kevin Topological conformal field theories and Calabi-Yau categories Adv. Math. 2007 165 214

[10] Deligne, P. Catégories tannakiennes 1990 111 195

[11] Drinfeld, Vladimir DG quotients of DG categories J. Algebra 2004 643 691

[12] Elmendorf, A. D., Kriz, I., Mandell, M. A., May, J. P. Rings, modules, and algebras in stable homotopy theory 1997

[13] Freed, Daniel S. Higher algebraic structures and quantization Comm. Math. Phys. 1994 343 398

[14] Hinich, Vladimir Drinfeld double for orbifolds 2007 251 265

[15] Hovey, Mark, Palmieri, John H., Strickland, Neil P. Axiomatic stable homotopy theory Mem. Amer. Math. Soc. 1997

[16] Hovey, Mark, Shipley, Brooke, Smith, Jeff Symmetric spectra J. Amer. Math. Soc. 2000 149 208

[17] Hu, Po, Kriz, Igor, Voronov, Alexander A. On Kontsevich’s Hochschild cohomology conjecture Compos. Math. 2006 143 168

[18] Joyal, A. Quasi-categories and Kan complexes J. Pure Appl. Algebra 2002 207 222

[19] Joyal, Andrã©, Street, Ross Tortile Yang-Baxter operators in tensor categories J. Pure Appl. Algebra 1991 43 51

[20] Kapranov, M. Rozansky-Witten invariants via Atiyah classes Compositio Math. 1999 71 113

[21] Kapustin, Anton, Rozansky, Lev, Saulina, Natalia Three-dimensional topological field theory and symplectic algebraic geometry. I Nuclear Phys. B 2009 295 355

[22] Kaufmann, Ralph M. A proof of a cyclic version of Deligne’s conjecture via cacti Math. Res. Lett. 2008 901 921

[23] Keller, Bernhard On differential graded categories 2006 151 190

[24] Kontsevich, Maxim Operads and motives in deformation quantization Lett. Math. Phys. 1999 35 72

[25] Kontsevich, Maxim Rozansky-Witten invariants via formal geometry Compositio Math. 1999 115 127

[26] Kontsevich, Maxim, Soibelman, Yan Deformations of algebras over operads and the Deligne conjecture 2000 255 307

[27] Lewis, L. G., Jr., May, J. P., Steinberger, M., Mcclure, J. E. Equivariant stable homotopy theory 1986

[28] Lurie, Jacob Higher topos theory 2009

[29] Lurie, Jacob On the classification of topological field theories 2009 129 280

[30] Mcclure, James E., Smith, Jeffrey H. A solution of Deligne’s Hochschild cohomology conjecture 2002 153 193

[31] Mã¼Ger, Michael From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors J. Pure Appl. Algebra 2003 159 219

[32] Neeman, Amnon The connection between the 𝐾-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel Ann. Sci. École Norm. Sup. (4) 1992 547 566

[33] Neeman, Amnon The Grothendieck duality theorem via Bousfield’s techniques and Brown representability J. Amer. Math. Soc. 1996 205 236

[34] Neeman, Amnon Triangulated categories 2001

[35] Orlov, D. O. Equivalences of derived categories and 𝐾3 surfaces J. Math. Sci. (New York) 1997 1361 1381

[36] Ostrik, Viktor Module categories over the Drinfeld double of a finite group Int. Math. Res. Not. 2003 1507 1520

[37] Rozansky, L., Witten, E. Hyper-Kähler geometry and invariants of three-manifolds Selecta Math. (N.S.) 1997 401 458

[38] Schwede, Stefan, Shipley, Brooke Stable model categories are categories of modules Topology 2003 103 153

[39] Shipley, Brooke 𝐻ℤ-algebra spectra are differential graded algebras Amer. J. Math. 2007 351 379

[40] Thomason, R. W., Trobaugh, Thomas Higher algebraic 𝐾-theory of schemes and of derived categories 1990 247 435

[41] Toã«N, Bertrand The homotopy theory of 𝑑𝑔-categories and derived Morita theory Invent. Math. 2007 615 667

[42] Toã«N, Bertrand Higher and derived stacks: a global overview 2009 435 487

[43] Toã«N, Bertrand, Vezzosi, Gabriele Homotopical algebraic geometry. I. Topos theory Adv. Math. 2005 257 372

[44] Toã«N, Bertrand, Vezzosi, Gabriele Homotopical algebraic geometry. II. Geometric stacks and applications Mem. Amer. Math. Soc. 2008

[45] Tradler, Thomas, Zeinalian, Mahmoud On the cyclic Deligne conjecture J. Pure Appl. Algebra 2006 280 299

Cité par Sources :