Integral models for Shimura varieties of abelian type
Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 967-1012

Voir la notice de l'article provenant de la source American Mathematical Society

We construct smooth integral models of Shimura varieties of abelian type at primes where the level structure is hyperspecial.
DOI : 10.1090/S0894-0347-10-00667-3

Kisin, Mark 1, 2

1 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
2 Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_10_00667_3,
     author = {Kisin, Mark},
     title = {Integral models for {Shimura} varieties of abelian type},
     journal = {Journal of the American Mathematical Society},
     pages = {967--1012},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00667-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00667-3/}
}
TY  - JOUR
AU  - Kisin, Mark
TI  - Integral models for Shimura varieties of abelian type
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 967
EP  - 1012
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00667-3/
DO  - 10.1090/S0894-0347-10-00667-3
ID  - 10_1090_S0894_0347_10_00667_3
ER  - 
%0 Journal Article
%A Kisin, Mark
%T Integral models for Shimura varieties of abelian type
%J Journal of the American Mathematical Society
%D 2010
%P 967-1012
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00667-3/
%R 10.1090/S0894-0347-10-00667-3
%F 10_1090_S0894_0347_10_00667_3
Kisin, Mark. Integral models for Shimura varieties of abelian type. Journal of the American Mathematical Society, Tome 23 (2010) no. 4, pp. 967-1012. doi: 10.1090/S0894-0347-10-00667-3

[1] Blasius, Don A 𝑝-adic property of Hodge classes on abelian varieties 1994 293 308

[2] Berthelot, P., Ogus, A. 𝐹-isocrystals and de Rham cohomology. I Invent. Math. 1983 159 199

[3] Bruhat, F., Tits, J. Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée Inst. Hautes Études Sci. Publ. Math. 1984 197 376

[4] Colliot-Thã©Lã¨Ne, J.-L., Sansuc, J.-J. Fibrés quadratiques et composantes connexes réelles Math. Ann. 1979 105 134

[5] Chevalley, Claude Deux théorèmes d’arithmétique J. Math. Soc. Japan 1951 36 44

[6] Colliot-Thã©Lã¨Ne, Jean-Louis, Suresh, Venapally Quelques questions d’approximation faible pour les tores algébriques Ann. Inst. Fourier (Grenoble) 2007 273 288

[7] Deligne, Pierre Travaux de Shimura 1971

[8] Deligne, Pierre, Milne, James S., Ogus, Arthur, Shih, Kuang-Yen Hodge cycles, motives, and Shimura varieties 1982

[9] Deligne, Pierre Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques 1979 247 289

[10] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[11] Schémas en groupes. I: Propriétés générales des schémas en groupes 1970

[12] Faltings, Gerd Integral crystalline cohomology over very ramified valuation rings J. Amer. Math. Soc. 1999 117 144

[13] Faltings, Gerd, Chai, Ching-Li Degeneration of abelian varieties 1990

[14] Fontaine, Jean-Marc Représentations 𝑝-adiques des corps locaux. I 1990 249 309

[15] Groupes de monodromie en géométrie algébrique. I 1972

[16] Kisin, Mark Crystalline representations and 𝐹-crystals 2006 459 496

[17] Kisin, Mark Potentially semi-stable deformation rings J. Amer. Math. Soc. 2008 513 546

[18] Kisin, Mark Modularity of 2-adic Barsotti-Tate representations Invent. Math. 2009 587 634

[19] Kisin, Mark Integral canonical models of Shimura varieties J. Théor. Nombres Bordeaux 2009 301 312

[20] Kottwitz, Robert E. Points on some Shimura varieties over finite fields J. Amer. Math. Soc. 1992 373 444

[21] Langlands, R. P. Some contemporary problems with origins in the Jugendtraum 1976 401 418

[22] Messing, William The crystals associated to Barsotti-Tate groups: with applications to abelian schemes 1972

[23] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[24] Milne, James S. The points on a Shimura variety modulo a prime of good reduction 1992 151 253

[25] Milne, J. S. Canonical models of (mixed) Shimura varieties and automorphic vector bundles 1990 283 414

[26] Milne, J. S. Shimura varieties and motives 1994 447 523

[27] Moonen, Ben Models of Shimura varieties in mixed characteristics 1998 267 350

[28] Prasad, Gopal, Yu, Jiu-Kang On quasi-reductive group schemes J. Algebraic Geom. 2006 507 549

[29] Rapoport, M., Zink, Th. Period spaces for 𝑝-divisible groups 1996

[30] Saavedra Rivano, Neantro Catégories Tannakiennes 1972

[31] Springer, T. A. Reductive groups 1979 3 27

[32] Tits, J. Reductive groups over local fields 1979 29 69

[33] Vasiu, Adrian Integral canonical models of Shimura varieties of preabelian type Asian J. Math. 1999 401 518

[34] Waterhouse, William C. Introduction to affine group schemes 1979

[35] Zink, Thomas The display of a formal 𝑝-divisible group Astérisque 2002 127 248

[36] Zink, Thomas Windows for displays of 𝑝-divisible groups 2001 491 518

Cité par Sources :