Massey products for elliptic curves of rank 1
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 725-747

Voir la notice de l'article provenant de la source American Mathematical Society

For an elliptic curve over $\mathbb {Q}$ of rank 1, integral $j$-invariant, and suitable finiteness in the Tate-Shafarevich group, we use the level-two Selmer variety and secondary cohomology products to find explicit analytic defining equations for global integral points inside the set of $p$-adic points.
DOI : 10.1090/S0894-0347-10-00665-X

Kim, Minhyong 1

1 Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom and The Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea
@article{10_1090_S0894_0347_10_00665_X,
     author = {Kim, Minhyong},
     title = {Massey products for elliptic curves of rank 1},
     journal = {Journal of the American Mathematical Society},
     pages = {725--747},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00665-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00665-X/}
}
TY  - JOUR
AU  - Kim, Minhyong
TI  - Massey products for elliptic curves of rank 1
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 725
EP  - 747
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00665-X/
DO  - 10.1090/S0894-0347-10-00665-X
ID  - 10_1090_S0894_0347_10_00665_X
ER  - 
%0 Journal Article
%A Kim, Minhyong
%T Massey products for elliptic curves of rank 1
%J Journal of the American Mathematical Society
%D 2010
%P 725-747
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00665-X/
%R 10.1090/S0894-0347-10-00665-X
%F 10_1090_S0894_0347_10_00665_X
Kim, Minhyong. Massey products for elliptic curves of rank 1. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 725-747. doi: 10.1090/S0894-0347-10-00665-X

[1] Bertolini, Massimo, Darmon, Henri Hida families and rational points on elliptic curves Invent. Math. 2007 371 431

[2] Besser, Amnon, Furusho, Hidekazu The double shuffle relations for 𝑝-adic multiple zeta values 2006 9 29

[3] Bloch, Spencer, Kato, Kazuya 𝐿-functions and Tamagawa numbers of motives 1990 333 400

[4] Deligne, P. Le groupe fondamental de la droite projective moins trois points 1989 79 297

[5] Deligne, Pierre Équations différentielles à points singuliers réguliers 1970

[6] Deninger, Christopher Higher order operations in Deligne cohomology Invent. Math. 1995 289 315

[7] Fontaine, Jean-Marc Sur certains types de représentations 𝑝-adiques du groupe de Galois d’un corps local Ann. of Math. (2) 1982 529 577

[8] Goldman, William M., Millson, John J. The deformation theory of representations of fundamental groups of compact Kähler manifolds Inst. Hautes Études Sci. Publ. Math. 1988 43 96

[9] Furusho, Hidekazu 𝑝-adic multiple zeta values. I. 𝑝-adic multiple polylogarithms and the 𝑝-adic KZ equation Invent. Math. 2004 253 286

[10] Hain, Richard M. The de Rham homotopy theory of complex algebraic varieties. I 𝐾-Theory 1987 271 324

[11] Hain, Richard Iterated integrals and algebraic cycles: examples and prospects 2002 55 118

[12] Hain, Richard Periods of limit mixed Hodge structures 2003 113 133

[13] Hain, Richard M., Zucker, Steven Unipotent variations of mixed Hodge structure Invent. Math. 1987 83 124

[14] Kato, Kazuya Lectures on the approach to Iwasawa theory for Hasse-Weil 𝐿-functions via 𝐵_{𝑑𝑅}. I 1993 50 163

[15] Kim, Minhyong The motivic fundamental group of 𝐏¹\sbs{0,1,∞} and the theorem of Siegel Invent. Math. 2005 629 656

[16] Kim, Minhyong The unipotent Albanese map and Selmer varieties for curves Publ. Res. Inst. Math. Sci. 2009 89 133

[17] Kim, Minhyong, Tamagawa, Akio The 𝑙-component of the unipotent Albanese map Math. Ann. 2008 223 235

[18] Kim, Minhyong, Hain, Richard M. A de Rham-Witt approach to crystalline rational homotopy theory Compos. Math. 2004 1245 1276

[19] Kolyvagin, Victor Alecsandrovich On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves 1991 429 436

[20] Navarro Aznar, V. Sur la théorie de Hodge-Deligne Invent. Math. 1987 11 76

[21] Neukirch, Jã¼Rgen, Schmidt, Alexander, Wingberg, Kay Cohomology of number fields 2008

[22] Sharifi, Romyar T. Massey products and ideal class groups J. Reine Angew. Math. 2007 1 33

[23] Wojtkowiak, Zdziså‚Aw Cosimplicial objects in algebraic geometry 1993 287 327

Cité par Sources :