Uniqueness of enhancement for triangulated categories
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 853-908 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

The paper contains general results on the uniqueness of a DG enhancement for triangulated categories. As a consequence we obtain such uniqueness for the unbounded derived categories of quasi-coherent sheaves, for the triangulated categories of perfect complexes, and for the bounded derived categories of coherent sheaves on quasi-projective schemes. If a scheme is projective, then we also prove a strong uniqueness for the triangulated category of perfect complexes and for the bounded derived categories of coherent sheaves. These results directly imply that fully faithful functors from the bounded derived categories of coherent sheaves and the triangulated categories of perfect complexes on projective schemes can be represented by objects on the product.
DOI : 10.1090/S0894-0347-10-00664-8

Lunts, Valery  1   ; Orlov, Dmitri  2

1 Department of Mathematics, Indiana University, Bloomington, Indiana 47405
2 Steklov Mathematical Institute, 8 Gubkina St., Moscow, Russia
@article{10_1090_S0894_0347_10_00664_8,
     author = {Lunts, Valery and Orlov, Dmitri},
     title = {Uniqueness of enhancement for triangulated categories},
     journal = {Journal of the American Mathematical Society},
     pages = {853--908},
     year = {2010},
     volume = {23},
     number = {3},
     doi = {10.1090/S0894-0347-10-00664-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00664-8/}
}
TY  - JOUR
AU  - Lunts, Valery
AU  - Orlov, Dmitri
TI  - Uniqueness of enhancement for triangulated categories
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 853
EP  - 908
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00664-8/
DO  - 10.1090/S0894-0347-10-00664-8
ID  - 10_1090_S0894_0347_10_00664_8
ER  - 
%0 Journal Article
%A Lunts, Valery
%A Orlov, Dmitri
%T Uniqueness of enhancement for triangulated categories
%J Journal of the American Mathematical Society
%D 2010
%P 853-908
%V 23
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00664-8/
%R 10.1090/S0894-0347-10-00664-8
%F 10_1090_S0894_0347_10_00664_8
Lunts, Valery; Orlov, Dmitri. Uniqueness of enhancement for triangulated categories. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 853-908. doi: 10.1090/S0894-0347-10-00664-8

[1] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos 1972

[2] Bökstedt, Marcel, Neeman, Amnon Homotopy limits in triangulated categories Compositio Math. 1993 209 234

[3] Bondal, A., Van Den Bergh, M. Generators and representability of functors in commutative and noncommutative geometry Mosc. Math. J. 2003

[4] Bondal, A. I., Kapranov, M. M. Framed triangulated categories Mat. Sb. 1990 669 683

[5] Bondal, Alexey I., Larsen, Michael, Lunts, Valery A. Grothendieck ring of pretriangulated categories Int. Math. Res. Not. 2004 1461 1495

[6] Drinfeld, Vladimir DG quotients of DG categories J. Algebra 2004 643 691

[7] Efimov, Alexander I., Lunts, Valery A., Orlov, Dmitri O. Deformation theory of objects in homotopy and derived categories. I. General theory Adv. Math. 2009 359 401

[8] Gabriel, Pierre Des catégories abéliennes Bull. Soc. Math. France 1962 323 448

[9] Grotendik, A., D′Edonne, Ž. A. Elements of algebraic topology Uspehi Mat. Nauk 1972 135 148

[10] Grothendieck, A. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes Inst. Hautes Études Sci. Publ. Math. 1961 222

[11] Hartshorne, Robin Residues and duality 1966

[12] Hinich, Vladimir Homological algebra of homotopy algebras Comm. Algebra 1997 3291 3323

[13] Castaño Iglesias, F., Enache, P., Năstăsescu, C., Torrecillas, B. Un analogue du théorème de Gabriel-Popescu et applications Bull. Sci. Math. 2004 323 332

[14] Kashiwara, Masaki, Schapira, Pierre Categories and sheaves 2006

[15] Keller, Bernhard Deriving DG categories Ann. Sci. École Norm. Sup. (4) 1994 63 102

[16] Keller, Bernhard Derived categories and their uses 1996 671 701

[17] Lipman, Joseph Lectures on local cohomology and duality 2002 39 89

[18] Menini, C. Gabriel-Popescu type theorems and graded modules 1988 239 251

[19] Neeman, Amnon The connection between the 𝐾-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel Ann. Sci. École Norm. Sup. (4) 1992 547 566

[20] Neeman, Amnon The Grothendieck duality theorem via Bousfield’s techniques and Brown representability J. Amer. Math. Soc. 1996 205 236

[21] Neeman, Amnon Triangulated categories 2001

[22] Okonek, Christian, Schneider, Michael, Spindler, Heinz Vector bundles on complex projective spaces 1980

[23] Orlov, D. O. Equivalences of derived categories and 𝐾3 surfaces J. Math. Sci. (New York) 1997 1361 1381

[24] Orlov, D. O. Derived categories of coherent sheaves and equivalences between them Uspekhi Mat. Nauk 2003 89 172

[25] Popescu, N. Abelian categories with applications to rings and modules 1973

[26] Serre, Jean-Pierre Faisceaux algébriques cohérents Ann. of Math. (2) 1955 197 278

[27] Spaltenstein, N. Resolutions of unbounded complexes Compositio Math. 1988 121 154

[28] Toën, Bertrand The homotopy theory of 𝑑𝑔-categories and derived Morita theory Invent. Math. 2007 615 667

[29] Thomason, R. W., Trobaugh, Thomas Higher algebraic 𝐾-theory of schemes and of derived categories 1990 247 435

[30] Thomason, R. W. The classification of triangulated subcategories Compositio Math. 1997 1 27

Cité par Sources :