Lunts, Valery  1 ; Orlov, Dmitri  2
@article{10_1090_S0894_0347_10_00664_8,
author = {Lunts, Valery and Orlov, Dmitri},
title = {Uniqueness of enhancement for triangulated categories},
journal = {Journal of the American Mathematical Society},
pages = {853--908},
year = {2010},
volume = {23},
number = {3},
doi = {10.1090/S0894-0347-10-00664-8},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00664-8/}
}
TY - JOUR AU - Lunts, Valery AU - Orlov, Dmitri TI - Uniqueness of enhancement for triangulated categories JO - Journal of the American Mathematical Society PY - 2010 SP - 853 EP - 908 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00664-8/ DO - 10.1090/S0894-0347-10-00664-8 ID - 10_1090_S0894_0347_10_00664_8 ER -
%0 Journal Article %A Lunts, Valery %A Orlov, Dmitri %T Uniqueness of enhancement for triangulated categories %J Journal of the American Mathematical Society %D 2010 %P 853-908 %V 23 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00664-8/ %R 10.1090/S0894-0347-10-00664-8 %F 10_1090_S0894_0347_10_00664_8
Lunts, Valery; Orlov, Dmitri. Uniqueness of enhancement for triangulated categories. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 853-908. doi: 10.1090/S0894-0347-10-00664-8
[1] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos 1972
[2] , Homotopy limits in triangulated categories Compositio Math. 1993 209 234
[3] , Generators and representability of functors in commutative and noncommutative geometry Mosc. Math. J. 2003
[4] , Framed triangulated categories Mat. Sb. 1990 669 683
[5] , , Grothendieck ring of pretriangulated categories Int. Math. Res. Not. 2004 1461 1495
[6] DG quotients of DG categories J. Algebra 2004 643 691
[7] , , Deformation theory of objects in homotopy and derived categories. I. General theory Adv. Math. 2009 359 401
[8] Des catégories abéliennes Bull. Soc. Math. France 1962 323 448
[9] , Elements of algebraic topology Uspehi Mat. Nauk 1972 135 148
[10] Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes Inst. Hautes Études Sci. Publ. Math. 1961 222
[11] Residues and duality 1966
[12] Homological algebra of homotopy algebras Comm. Algebra 1997 3291 3323
[13] , , , Un analogue du théorème de Gabriel-Popescu et applications Bull. Sci. Math. 2004 323 332
[14] , Categories and sheaves 2006
[15] Deriving DG categories Ann. Sci. École Norm. Sup. (4) 1994 63 102
[16] Derived categories and their uses 1996 671 701
[17] Lectures on local cohomology and duality 2002 39 89
[18] Gabriel-Popescu type theorems and graded modules 1988 239 251
[19] The connection between the 𝐾-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel Ann. Sci. École Norm. Sup. (4) 1992 547 566
[20] The Grothendieck duality theorem via Bousfield’s techniques and Brown representability J. Amer. Math. Soc. 1996 205 236
[21] Triangulated categories 2001
[22] , , Vector bundles on complex projective spaces 1980
[23] Equivalences of derived categories and 𝐾3 surfaces J. Math. Sci. (New York) 1997 1361 1381
[24] Derived categories of coherent sheaves and equivalences between them Uspekhi Mat. Nauk 2003 89 172
[25] Abelian categories with applications to rings and modules 1973
[26] Faisceaux algébriques cohérents Ann. of Math. (2) 1955 197 278
[27] Resolutions of unbounded complexes Compositio Math. 1988 121 154
[28] The homotopy theory of 𝑑𝑔-categories and derived Morita theory Invent. Math. 2007 615 667
[29] , Higher algebraic 𝐾-theory of schemes and of derived categories 1990 247 435
[30] The classification of triangulated subcategories Compositio Math. 1997 1 27
Cité par Sources :