Log canonical singularities are Du Bois
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 791-813

Voir la notice de l'article provenant de la source American Mathematical Society

A recurring difficulty in the Minimal Model Program is that while log terminal singularities are quite well behaved (for instance, they are rational), log canonical singularities are much more complicated; they need not even be Cohen-Macaulay. The aim of this paper is to prove that log canonical singularities are Du Bois. The concept of Du Bois singularities, introduced by Steenbrink, is a weakening of rationality. We also prove flatness of the cohomology sheaves of the relative dualizing complex of a projective family with Du Bois fibers. This implies that each connected component of the moduli space of stable log varieties parametrizes either only Cohen-Macaulay or only non-Cohen-Macaulay objects.
DOI : 10.1090/S0894-0347-10-00663-6

Kollár, János 1 ; Kovács, Sándor 2

1 Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
2 Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
@article{10_1090_S0894_0347_10_00663_6,
     author = {Koll\~A{\textexclamdown}r, J\~A{\textexclamdown}nos and Kov\~A{\textexclamdown}cs, S\~A{\textexclamdown}ndor},
     title = {Log canonical singularities are {Du} {Bois}},
     journal = {Journal of the American Mathematical Society},
     pages = {791--813},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00663-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00663-6/}
}
TY  - JOUR
AU  - Kollár, János
AU  - Kovács, Sándor
TI  - Log canonical singularities are Du Bois
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 791
EP  - 813
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00663-6/
DO  - 10.1090/S0894-0347-10-00663-6
ID  - 10_1090_S0894_0347_10_00663_6
ER  - 
%0 Journal Article
%A Kollár, János
%A Kovács, Sándor
%T Log canonical singularities are Du Bois
%J Journal of the American Mathematical Society
%D 2010
%P 791-813
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00663-6/
%R 10.1090/S0894-0347-10-00663-6
%F 10_1090_S0894_0347_10_00663_6
Kollár, János; Kovács, Sándor. Log canonical singularities are Du Bois. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 791-813. doi: 10.1090/S0894-0347-10-00663-6

[1] Altman, Allen B., Kleiman, Steven L. Compactifying the Picard scheme Adv. in Math. 1980 50 112

[2] Ambro, F. Quasi-log varieties Tr. Mat. Inst. Steklova 2003 220 239

[3] Atiyah, M. F., Macdonald, I. G. Introduction to commutative algebra 1969

[4] Cossec, Franã§Ois R., Dolgachev, Igor V. Enriques surfaces. I 1989

[5] Du Bois, Philippe Complexe de de Rham filtré d’une variété singulière Bull. Soc. Math. France 1981 41 81

[6] Dubois, Philippe, Jarraud, Pierre Une propriété de commutation au changement de base des images directes supérieures du faisceau structural C. R. Acad. Sci. Paris Sér. A 1974 745 747

[7] Fujino, Osamu Abundance theorem for semi log canonical threefolds Duke Math. J. 2000 513 532

[8] Guillã©N, F., Navarro Aznar, V., Pascual Gainza, P., Puerta, F. Hyperrésolutions cubiques et descente cohomologique 1988

[9] Hartshorne, Robin Residues and duality 1966

[10] Hartshorne, Robin Algebraic geometry 1977

[11] Ishii, Shihoko On isolated Gorenstein singularities Math. Ann. 1985 541 554

[12] Ishii, Shihoko Du Bois singularities on a normal surface 1987 153 163

[13] Ishii, Shihoko Isolated 𝑄-Gorenstein singularities of dimension three 1987 165 198

[14] Kawakita, Masayuki Inversion of adjunction on log canonicity Invent. Math. 2007 129 133

[15] Kawamata, Yujiro On Fujita’s freeness conjecture for 3-folds and 4-folds Math. Ann. 1997 491 505

[16] Kollã¡R, Jã¡Nos Higher direct images of dualizing sheaves. I Ann. of Math. (2) 1986 11 42

[17] Kollã¡R, Jã¡Nos Higher direct images of dualizing sheaves. II Ann. of Math. (2) 1986 171 202

[18] Kollã¡R, Jã¡Nos Shafarevich maps and automorphic forms 1995

[19] Kollã¡R, Jã¡Nos, Mori, Shigefumi Birational geometry of algebraic varieties 1998

[20] Flips and abundance for algebraic threefolds 1992 1 258

[21] Kovã¡Cs, Sã¡Ndor J. Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink Compositio Math. 1999 123 133

[22] Kovã¡Cs, Sã¡Ndor J. A characterization of rational singularities Duke Math. J. 2000 187 191

[23] Kovã¡Cs, Sã¡Ndor Rational, log canonical, Du Bois singularities. II. Kodaira vanishing and small deformations Compositio Math. 2000 297 304

[24] Peters, Chris A. M., Steenbrink, Joseph H. M. Mixed Hodge structures 2008

[25] Saito, Morihiko Mixed Hodge complexes on algebraic varieties Math. Ann. 2000 283 331

[26] Schwede, Karl A simple characterization of Du Bois singularities Compos. Math. 2007 813 828

[27] Schwede, Karl 𝐹-injective singularities are Du Bois Amer. J. Math. 2009 445 473

[28] Steenbrink, J. H. M. Mixed Hodge structures associated with isolated singularities 1983 513 536

Cité par Sources :