Voir la notice de l'article provenant de la source American Mathematical Society
Kollár, János 1 ; Kovács, Sándor 2
@article{10_1090_S0894_0347_10_00663_6,
author = {Koll\~A{\textexclamdown}r, J\~A{\textexclamdown}nos and Kov\~A{\textexclamdown}cs, S\~A{\textexclamdown}ndor},
title = {Log canonical singularities are {Du} {Bois}},
journal = {Journal of the American Mathematical Society},
pages = {791--813},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2010},
doi = {10.1090/S0894-0347-10-00663-6},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00663-6/}
}
TY - JOUR AU - Kollár, János AU - Kovács, Sándor TI - Log canonical singularities are Du Bois JO - Journal of the American Mathematical Society PY - 2010 SP - 791 EP - 813 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00663-6/ DO - 10.1090/S0894-0347-10-00663-6 ID - 10_1090_S0894_0347_10_00663_6 ER -
%0 Journal Article %A Kollár, János %A Kovács, Sándor %T Log canonical singularities are Du Bois %J Journal of the American Mathematical Society %D 2010 %P 791-813 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00663-6/ %R 10.1090/S0894-0347-10-00663-6 %F 10_1090_S0894_0347_10_00663_6
Kollár, János; Kovács, Sándor. Log canonical singularities are Du Bois. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 791-813. doi: 10.1090/S0894-0347-10-00663-6
[1] , Compactifying the Picard scheme Adv. in Math. 1980 50 112
[2] Quasi-log varieties Tr. Mat. Inst. Steklova 2003 220 239
[3] , Introduction to commutative algebra 1969
[4] , Enriques surfaces. I 1989
[5] Complexe de de Rham filtré dâune variété singulière Bull. Soc. Math. France 1981 41 81
[6] , Une propriété de commutation au changement de base des images directes supérieures du faisceau structural C. R. Acad. Sci. Paris Sér. A 1974 745 747
[7] Abundance theorem for semi log canonical threefolds Duke Math. J. 2000 513 532
[8] , , , Hyperrésolutions cubiques et descente cohomologique 1988
[9] Residues and duality 1966
[10] Algebraic geometry 1977
[11] On isolated Gorenstein singularities Math. Ann. 1985 541 554
[12] Du Bois singularities on a normal surface 1987 153 163
[13] Isolated ð-Gorenstein singularities of dimension three 1987 165 198
[14] Inversion of adjunction on log canonicity Invent. Math. 2007 129 133
[15] On Fujitaâs freeness conjecture for 3-folds and 4-folds Math. Ann. 1997 491 505
[16] Higher direct images of dualizing sheaves. I Ann. of Math. (2) 1986 11 42
[17] Higher direct images of dualizing sheaves. II Ann. of Math. (2) 1986 171 202
[18] Shafarevich maps and automorphic forms 1995
[19] , Birational geometry of algebraic varieties 1998
[20] Flips and abundance for algebraic threefolds 1992 1 258
[21] Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink Compositio Math. 1999 123 133
[22] A characterization of rational singularities Duke Math. J. 2000 187 191
[23] Rational, log canonical, Du Bois singularities. II. Kodaira vanishing and small deformations Compositio Math. 2000 297 304
[24] , Mixed Hodge structures 2008
[25] Mixed Hodge complexes on algebraic varieties Math. Ann. 2000 283 331
[26] A simple characterization of Du Bois singularities Compos. Math. 2007 813 828
[27] ð¹-injective singularities are Du Bois Amer. J. Math. 2009 445 473
[28] Mixed Hodge structures associated with isolated singularities 1983 513 536
Cité par Sources :