The Calderón problem with partial data in two dimensions
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 655-691

Voir la notice de l'article provenant de la source American Mathematical Society

We prove for a two-dimensional bounded domain that the Cauchy data for the Schrödinger equation measured on an arbitrary open subset of the boundary uniquely determines the potential. This implies, for the conductivity equation, that if we measure the current fluxes at the boundary on an arbitrary open subset of the boundary produced by voltage potentials supported in the same subset, we can uniquely determine the conductivity. We use Carleman estimates with degenerate weight functions to construct appropriate complex geometrical optics solutions to prove the results.
DOI : 10.1090/S0894-0347-10-00656-9

Imanuvilov, Oleg 1 ; Uhlmann, Gunther 2 ; Yamamoto, Masahiro 3

1 Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins, Colorado 80523
2 Department of Mathematics, University of Washington, Seattle, Washington 98195
3 Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153, Japan
@article{10_1090_S0894_0347_10_00656_9,
     author = {Imanuvilov, Oleg and Uhlmann, Gunther and Yamamoto, Masahiro},
     title = {The {Calder\~A{\textthreesuperior}n} problem with partial data in two dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {655--691},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00656-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00656-9/}
}
TY  - JOUR
AU  - Imanuvilov, Oleg
AU  - Uhlmann, Gunther
AU  - Yamamoto, Masahiro
TI  - The Calderón problem with partial data in two dimensions
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 655
EP  - 691
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00656-9/
DO  - 10.1090/S0894-0347-10-00656-9
ID  - 10_1090_S0894_0347_10_00656_9
ER  - 
%0 Journal Article
%A Imanuvilov, Oleg
%A Uhlmann, Gunther
%A Yamamoto, Masahiro
%T The Calderón problem with partial data in two dimensions
%J Journal of the American Mathematical Society
%D 2010
%P 655-691
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00656-9/
%R 10.1090/S0894-0347-10-00656-9
%F 10_1090_S0894_0347_10_00656_9
Imanuvilov, Oleg; Uhlmann, Gunther; Yamamoto, Masahiro. The Calderón problem with partial data in two dimensions. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 655-691. doi: 10.1090/S0894-0347-10-00656-9

[1] Alekseev, V. M., Tikhomirov, V. M., Fomin, S. V. Optimal control 1987

[2] Astala, Kari, Pã¤Ivã¤Rinta, Lassi Calderón’s inverse conductivity problem in the plane Ann. of Math. (2) 2006 265 299

[3] Astala, Kari, Pã¤Ivã¤Rinta, Lassi, Lassas, Matti Calderón’s inverse problem for anisotropic conductivity in the plane Comm. Partial Differential Equations 2005 207 224

[4] Bã¶Ttcher, Albrecht, Silbermann, Bernd Analysis of Toeplitz operators 2006

[5] Brown, Russell M., Torres, Rodolfo H. Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in 𝐿^{𝑝},𝑝>2𝑛 J. Fourier Anal. Appl. 2003 563 574

[6] Brown, Russell M., Uhlmann, Gunther A. Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions Comm. Partial Differential Equations 1997 1009 1027

[7] Bukhgeim, A. L. Recovering a potential from Cauchy data in the two-dimensional case J. Inverse Ill-Posed Probl. 2008 19 33

[8] Bukhgeim, Alexander L., Uhlmann, Gunther Recovering a potential from partial Cauchy data Comm. Partial Differential Equations 2002 653 668

[9] Calderã³N, Alberto-P. On an inverse boundary value problem 1980 65 73

[10] Cheng, Jin, Yamamoto, Masahiro Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case SIAM J. Math. Anal. 2004 1371 1393

[11] Dos Santos Ferreira, David, Kenig, Carlos E., Sjã¶Strand, Johannes, Uhlmann, Gunther Determining a magnetic Schrödinger operator from partial Cauchy data Comm. Math. Phys. 2007 467 488

[12] Dos Santos Ferreira, David, Kenig, Carlos E., Salo, Mikko, Uhlmann, Gunther Limiting Carleman weights and anisotropic inverse problems Invent. Math. 2009 119 171

[13] Evans, Lawrence C. Partial differential equations 1998

[14] Greenleaf, Allan, Lassas, Matti, Uhlmann, Gunther The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction Comm. Pure Appl. Math. 2003 328 352

[15] Heck, Horst, Wang, Jenn-Nan Stability estimates for the inverse boundary value problem by partial Cauchy data Inverse Problems 2006 1787 1796

[16] Hã¶Rmander, Lars The analysis of linear partial differential operators. I 1983

[17] Isakov, Victor On uniqueness in the inverse conductivity problem with local data Inverse Probl. Imaging 2007 95 105

[18] Kang, Hyeonbae, Uhlmann, Gunther Inverse problems for the Pauli Hamiltonian in two dimensions J. Fourier Anal. Appl. 2004 201 215

[19] Kenig, Carlos E., Sjã¶Strand, Johannes, Uhlmann, Gunther The Calderón problem with partial data Ann. of Math. (2) 2007 567 591

[20] Knudsen, Kim The Calderón problem with partial data for less smooth conductivities Comm. Partial Differential Equations 2006 57 71

[21] Knudsen, Kim, Salo, Mikko Determining nonsmooth first order terms from partial boundary measurements Inverse Probl. Imaging 2007 349 369

[22] Kohn, R. V., Vogelius, M. Determining conductivity by boundary measurements. II. Interior results Comm. Pure Appl. Math. 1985 643 667

[23] Kohn, Robert V., Vogelius, Michael Identification of an unknown conductivity by means of measurements at the boundary 1984 113 123

[24] Nachman, Adrian I. Global uniqueness for a two-dimensional inverse boundary value problem Ann. of Math. (2) 1996 71 96

[25] Pã¤Ivã¤Rinta, Lassi, Panchenko, Alexander, Uhlmann, Gunther Complex geometrical optics solutions for Lipschitz conductivities Rev. Mat. Iberoamericana 2003 57 72

[26] Sun, Ziqi, Uhlmann, Gunther Anisotropic inverse problems in two dimensions Inverse Problems 2003 1001 1010

[27] Sylvester, John An anisotropic inverse boundary value problem Comm. Pure Appl. Math. 1990 201 232

[28] Sylvester, John, Uhlmann, Gunther A global uniqueness theorem for an inverse boundary value problem Ann. of Math. (2) 1987 153 169

[29] Sylvester, John, Uhlmann, Gunther Inverse boundary value problems at the boundary—continuous dependence Comm. Pure Appl. Math. 1988 197 219

[30] Tzou, Leo Stability estimates for coefficients of magnetic Schrödinger equation from full and partial boundary measurements Comm. Partial Differential Equations 2008 1911 1952

[31] Uhlmann, Gunther Commentary on Calderón’s paper (29), on an inverse boundary value problem 2008 623 636

[32] Vekua, I. N. Generalized analytic functions 1962

Cité par Sources :