Voir la notice de l'article provenant de la source American Mathematical Society
Imanuvilov, Oleg 1 ; Uhlmann, Gunther 2 ; Yamamoto, Masahiro 3
@article{10_1090_S0894_0347_10_00656_9,
     author = {Imanuvilov, Oleg and Uhlmann, Gunther and Yamamoto, Masahiro},
     title = {The {Calder\~A{\textthreesuperior}n} problem with partial data in two dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {655--691},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00656-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00656-9/}
}
                      
                      
                    TY - JOUR AU - Imanuvilov, Oleg AU - Uhlmann, Gunther AU - Yamamoto, Masahiro TI - The Calderón problem with partial data in two dimensions JO - Journal of the American Mathematical Society PY - 2010 SP - 655 EP - 691 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00656-9/ DO - 10.1090/S0894-0347-10-00656-9 ID - 10_1090_S0894_0347_10_00656_9 ER -
%0 Journal Article %A Imanuvilov, Oleg %A Uhlmann, Gunther %A Yamamoto, Masahiro %T The Calderón problem with partial data in two dimensions %J Journal of the American Mathematical Society %D 2010 %P 655-691 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00656-9/ %R 10.1090/S0894-0347-10-00656-9 %F 10_1090_S0894_0347_10_00656_9
Imanuvilov, Oleg; Uhlmann, Gunther; Yamamoto, Masahiro. The Calderón problem with partial data in two dimensions. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 655-691. doi: 10.1090/S0894-0347-10-00656-9
[1] , , Optimal control 1987
[2] , Calderónâs inverse conductivity problem in the plane Ann. of Math. (2) 2006 265 299
[3] , , Calderónâs inverse problem for anisotropic conductivity in the plane Comm. Partial Differential Equations 2005 207 224
[4] , Analysis of Toeplitz operators 2006
[5] , Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in ð¿^{ð},ð>2ð J. Fourier Anal. Appl. 2003 563 574
[6] , Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions Comm. Partial Differential Equations 1997 1009 1027
[7] Recovering a potential from Cauchy data in the two-dimensional case J. Inverse Ill-Posed Probl. 2008 19 33
[8] , Recovering a potential from partial Cauchy data Comm. Partial Differential Equations 2002 653 668
[9] On an inverse boundary value problem 1980 65 73
[10] , Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case SIAM J. Math. Anal. 2004 1371 1393
[11] , , , Determining a magnetic Schrödinger operator from partial Cauchy data Comm. Math. Phys. 2007 467 488
[12] , , , Limiting Carleman weights and anisotropic inverse problems Invent. Math. 2009 119 171
[13] Partial differential equations 1998
[14] , , The Calderón problem for conormal potentials. I. Global uniqueness and reconstruction Comm. Pure Appl. Math. 2003 328 352
[15] , Stability estimates for the inverse boundary value problem by partial Cauchy data Inverse Problems 2006 1787 1796
[16] The analysis of linear partial differential operators. I 1983
[17] On uniqueness in the inverse conductivity problem with local data Inverse Probl. Imaging 2007 95 105
[18] , Inverse problems for the Pauli Hamiltonian in two dimensions J. Fourier Anal. Appl. 2004 201 215
[19] , , The Calderón problem with partial data Ann. of Math. (2) 2007 567 591
[20] The Calderón problem with partial data for less smooth conductivities Comm. Partial Differential Equations 2006 57 71
[21] , Determining nonsmooth first order terms from partial boundary measurements Inverse Probl. Imaging 2007 349 369
[22] , Determining conductivity by boundary measurements. II. Interior results Comm. Pure Appl. Math. 1985 643 667
[23] , Identification of an unknown conductivity by means of measurements at the boundary 1984 113 123
[24] Global uniqueness for a two-dimensional inverse boundary value problem Ann. of Math. (2) 1996 71 96
[25] , , Complex geometrical optics solutions for Lipschitz conductivities Rev. Mat. Iberoamericana 2003 57 72
[26] , Anisotropic inverse problems in two dimensions Inverse Problems 2003 1001 1010
[27] An anisotropic inverse boundary value problem Comm. Pure Appl. Math. 1990 201 232
[28] , A global uniqueness theorem for an inverse boundary value problem Ann. of Math. (2) 1987 153 169
[29] , Inverse boundary value problems at the boundaryâcontinuous dependence Comm. Pure Appl. Math. 1988 197 219
[30] Stability estimates for coefficients of magnetic Schrödinger equation from full and partial boundary measurements Comm. Partial Differential Equations 2008 1911 1952
[31] Commentary on Calderónâs paper (29), on an inverse boundary value problem 2008 623 636
[32] Generalized analytic functions 1962
Cité par Sources :