Quantization of quasi-Lie bialgebras
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 611-653

Voir la notice de l'article provenant de la source American Mathematical Society

We construct quantization functors of quasi-Lie bialgebras. We establish a bijection between this set of quantization functors, modulo equivalence and twist equivalence, and the set of quantization functors of Lie bialgebras, modulo equivalence. This is based on the acyclicity of the kernels of natural morphisms between the universal versions of Lie algebra cohomology complexes for quasi-Lie and Lie bialgebras. The proof of this acyclicity consists of several steps, ending up in the acyclicity of a complex related to free Lie algebras, namely, the universal version of the Lie algebra cohomology complex of a Lie algebra in its enveloping algebra, viewed as the left regular module. Using the same arguments, we also prove the compatibility of quantization functors of quasi-Lie bialgebras with twists, which allows us to recover our earlier results on compatibility of quantization functors with twists in the case of Lie bialgebras.
DOI : 10.1090/S0894-0347-10-00654-5

Enriquez, Benjamin 1 ; Halbout, Gilles 2

1 Institut de Recherche Matématique Avancée (CNRS) et Université de Strasbourg, 7, rue René Descartes, F-67084 Strasbourg, France
2 Institut de Mathématiques, Université Montpellier 2, Place E. Bataillon, F-34095 Montpellier, France
@article{10_1090_S0894_0347_10_00654_5,
     author = {Enriquez, Benjamin and Halbout, Gilles},
     title = {Quantization of {quasi-Lie} bialgebras},
     journal = {Journal of the American Mathematical Society},
     pages = {611--653},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-10-00654-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00654-5/}
}
TY  - JOUR
AU  - Enriquez, Benjamin
AU  - Halbout, Gilles
TI  - Quantization of quasi-Lie bialgebras
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 611
EP  - 653
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00654-5/
DO  - 10.1090/S0894-0347-10-00654-5
ID  - 10_1090_S0894_0347_10_00654_5
ER  - 
%0 Journal Article
%A Enriquez, Benjamin
%A Halbout, Gilles
%T Quantization of quasi-Lie bialgebras
%J Journal of the American Mathematical Society
%D 2010
%P 611-653
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-10-00654-5/
%R 10.1090/S0894-0347-10-00654-5
%F 10_1090_S0894_0347_10_00654_5
Enriquez, Benjamin; Halbout, Gilles. Quantization of quasi-Lie bialgebras. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 611-653. doi: 10.1090/S0894-0347-10-00654-5

[1] Bourbaki, N. Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie 1972 320

[2] Drinfel′D, V. G. Quantum groups 1987 798 820

[3] Drinfel′D, V. G. Quasi-Hopf algebras Algebra i Analiz 1989 114 148

[4] Drinfel′D, V. G. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with 𝐺𝑎𝑙(\overline{𝑄}/𝑄) Algebra i Analiz 1990 149 181

[5] Drinfel′D, V. G. On some unsolved problems in quantum group theory 1992 1 8

[6] Enriquez, B. On some universal algebras associated to the category of Lie bialgebras Adv. Math. 2001 1 23

[7] Etingof, Pavel, Kazhdan, David Quantization of Lie bialgebras. I Selecta Math. (N.S.) 1996 1 41

[8] Etingof, Pavel, Kazhdan, David Quantization of Lie bialgebras. II, III Selecta Math. (N.S.) 1998

[9] Gavarini, Fabio The quantum duality principle Ann. Inst. Fourier (Grenoble) 2002 809 834

[10] Gerstenhaber, Murray, Schack, Samuel D. Bialgebra cohomology, deformations, and quantum groups Proc. Nat. Acad. Sci. U.S.A. 1990 478 481

[11] Kostant, Bertram, Sternberg, Shlomo Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras Ann. Physics 1987 49 113

[12] Lecomte, Pierre B. A., Roger, Claude Modules et cohomologies des bigèbres de Lie C. R. Acad. Sci. Paris Sér. I Math. 1990 405 410

[13] Mac Lane, Saunders Categorical algebra Bull. Amer. Math. Soc. 1965 40 106

[14] Shnider, Steven, Sternberg, Shlomo Quantum groups 1993

Cité par Sources :