A new proof of Gromov’s theorem on groups of polynomial growth
Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 815-829

Voir la notice de l'article provenant de la source American Mathematical Society

We give a new proof of Gromov’s theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. The proof does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.
DOI : 10.1090/S0894-0347-09-00658-4

Kleiner, Bruce 1

1 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
@article{10_1090_S0894_0347_09_00658_4,
     author = {Kleiner, Bruce},
     title = {A new proof of {Gromov\^a€™s} theorem on groups of polynomial growth},
     journal = {Journal of the American Mathematical Society},
     pages = {815--829},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00658-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00658-4/}
}
TY  - JOUR
AU  - Kleiner, Bruce
TI  - A new proof of Gromov’s theorem on groups of polynomial growth
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 815
EP  - 829
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00658-4/
DO  - 10.1090/S0894-0347-09-00658-4
ID  - 10_1090_S0894_0347_09_00658_4
ER  - 
%0 Journal Article
%A Kleiner, Bruce
%T A new proof of Gromov’s theorem on groups of polynomial growth
%J Journal of the American Mathematical Society
%D 2010
%P 815-829
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00658-4/
%R 10.1090/S0894-0347-09-00658-4
%F 10_1090_S0894_0347_09_00658_4
Kleiner, Bruce. A new proof of Gromov’s theorem on groups of polynomial growth. Journal of the American Mathematical Society, Tome 23 (2010) no. 3, pp. 815-829. doi: 10.1090/S0894-0347-09-00658-4

[1] Colding, Tobias H., Minicozzi, William P., Ii Harmonic functions on manifolds Ann. of Math. (2) 1997 725 747

[2] Coulhon, Thierry, Saloff-Coste, Laurent Isopérimétrie pour les groupes et les variétés Rev. Mat. Iberoamericana 1993 293 314

[3] Coulhon, Thierry, Saloff-Coste, Laurent Variétés riemanniennes isométriques à l’infini Rev. Mat. Iberoamericana 1995 687 726

[4] De La Harpe, Pierre, Valette, Alain La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158

[5] Fisher, David, Margulis, Gregory Almost isometric actions, property (T), and local rigidity Invent. Math. 2005 19 80

[6] Gromov, Mikhael Groups of polynomial growth and expanding maps Inst. Hautes Études Sci. Publ. Math. 1981 53 73

[7] Gromov, M. Asymptotic invariants of infinite groups 1993 1 295

[8] Gromov, M. Random walk in random groups Geom. Funct. Anal. 2003 73 146

[9] Kleiner, Bruce, Leeb, Bernhard Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings Inst. Hautes Études Sci. Publ. Math. 1997

[10] Korevaar, Nicholas J., Schoen, Richard M. Global existence theorems for harmonic maps to non-locally compact spaces Comm. Anal. Geom. 1997 333 387

[11] Milnor, John Growth of finitely generated solvable groups J. Differential Geometry 1968 447 449

[12] Mok, Ngaiming Harmonic forms with values in locally constant Hilbert bundles J. Fourier Anal. Appl. 1995 433 453

[13] Montgomery, Deane, Zippin, Leo Topological transformation groups 1974

[14] Papasoglu, Panos Quasi-isometry invariance of group splittings Ann. of Math. (2) 2005 759 830

[15] Shalom, Yehuda The growth of linear groups J. Algebra 1998 169 174

[16] Å Varc, A. S. A volume invariant of coverings Dokl. Akad. Nauk SSSR (N.S.) 1955 32 34

[17] Schoen, R., Yau, S.-T. Lectures on differential geometry 1994

[18] Tits, J. Free subgroups in linear groups J. Algebra 1972 250 270

[19] Van Den Dries, L., Wilkie, A. J. Gromov’s theorem on groups of polynomial growth and elementary logic J. Algebra 1984 349 374

[20] Wolf, Joseph A. Growth of finitely generated solvable groups and curvature of Riemannian manifolds J. Differential Geometry 1968 421 446

Cité par Sources :