Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms
Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 563-589

Voir la notice de l'article provenant de la source American Mathematical Society

We show that a multiplicative form of Dirichlet’s theorem on simultaneous Diophantine approximation as formulated by Minkowski cannot be improved for almost all points on any analytic curve in $\mathbb {R}^k$ which is not contained in a proper affine subspace. Such an investigation was initiated by Davenport and Schmidt in the late 1960s. The Diophantine problem is then settled via showing that a certain sequence of expanding translates of curves in the homogeneous space of unimodular lattices in $\mathbb {R}^{k+1}$ gets equidistributed in the limit. We use Ratner’s theorem on unipotent flows, linearization techniques, and a new observation about intertwined linear dynamics of various $\mathrm {SL}(m,\mathbb {R})$’s containeod in $\mathrm {SL}(k+1,\mathbb {R})$.
DOI : 10.1090/S0894-0347-09-00657-2

Shah, Nimish 1, 2

1 Tata Institute of Fundamental Research, Mumbai 400005, India
2 Department of Mathematics, Ohio State University, Columbus, Ohio 43210
@article{10_1090_S0894_0347_09_00657_2,
     author = {Shah, Nimish},
     title = {Expanding translates of curves and {Dirichlet-Minkowski} theorem on linear forms},
     journal = {Journal of the American Mathematical Society},
     pages = {563--589},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00657-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00657-2/}
}
TY  - JOUR
AU  - Shah, Nimish
TI  - Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 563
EP  - 589
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00657-2/
DO  - 10.1090/S0894-0347-09-00657-2
ID  - 10_1090_S0894_0347_09_00657_2
ER  - 
%0 Journal Article
%A Shah, Nimish
%T Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms
%J Journal of the American Mathematical Society
%D 2010
%P 563-589
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00657-2/
%R 10.1090/S0894-0347-09-00657-2
%F 10_1090_S0894_0347_09_00657_2
Shah, Nimish. Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 563-589. doi: 10.1090/S0894-0347-09-00657-2

[1] Baker, R. C. Dirichlet’s theorem on Diophantine approximation Math. Proc. Cambridge Philos. Soc. 1978 37 59

[2] Bugeaud, Yann Approximation by algebraic integers and Hausdorff dimension J. London Math. Soc. (2) 2002 547 559

[3] Cassels, J. W. S. An introduction to the geometry of numbers 1971

[4] Dani, S. G. Divergent trajectories of flows on homogeneous spaces and Diophantine approximation J. Reine Angew. Math. 1985 55 89

[5] Dani, S. G., Margulis, G. A. Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces Proc. Indian Acad. Sci. Math. Sci. 1991 1 17

[6] Dani, S. G., Margulis, G. A. Limit distributions of orbits of unipotent flows and values of quadratic forms 1993 91 137

[7] Davenport, H., Schmidt, W. M. Dirichlet’s theorem on diophantine approximation. II Acta Arith. 1969/70 413 424

[8] Davenport, H., Schmidt, Wolfgang M. Dirichlet’s theorem on diophantine approximation 1970 113 132

[9] Dodson, M. M., Rynne, B. P., Vickers, J. A. G. Dirichlet’s theorem and Diophantine approximation on manifolds J. Number Theory 1990 85 88

[10] Kleinbock, D. Y., Margulis, G. A. Flows on homogeneous spaces and Diophantine approximation on manifolds Ann. of Math. (2) 1998 339 360

[11] Kleinbock, Dmitry, Weiss, Barak Dirichlet’s theorem on Diophantine approximation and homogeneous flows J. Mod. Dyn. 2008 43 62

[12] Mozes, Shahar, Shah, Nimish On the space of ergodic invariant measures of unipotent flows Ergodic Theory Dynam. Systems 1995 149 159

[13] Ratner, Marina On Raghunathan’s measure conjecture Ann. of Math. (2) 1991 545 607

[14] Ratner, Marina Raghunathan’s topological conjecture and distributions of unipotent flows Duke Math. J. 1991 235 280

[15] Schmidt, Wolfgang M. Diophantine approximation 1980

[16] Shah, Nimish A. Uniformly distributed orbits of certain flows on homogeneous spaces Math. Ann. 1991 315 334

[17] Shah, Nimish A. Limit distributions of polynomial trajectories on homogeneous spaces Duke Math. J. 1994 711 732

[18] Shah, Nimish A. Limit distributions of expanding translates of certain orbits on homogeneous spaces Proc. Indian Acad. Sci. Math. Sci. 1996 105 125

[19] Shah, Nimish A. Limiting distributions of curves under geodesic flow on hyperbolic manifolds Duke Math. J. 2009 251 279

[20] Shah, Nimish A. Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation Invent. Math. 2009 509 532

Cité par Sources :