Voir la notice de l'article provenant de la source American Mathematical Society
Klainerman, Sergiu 1 ; Rodnianski, Igor 1
@article{10_1090_S0894_0347_09_00655_9,
     author = {Klainerman, Sergiu and Rodnianski, Igor},
     title = {On the breakdown criterion in general relativity},
     journal = {Journal of the American Mathematical Society},
     pages = {345--382},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00655-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00655-9/}
}
                      
                      
                    TY - JOUR AU - Klainerman, Sergiu AU - Rodnianski, Igor TI - On the breakdown criterion in general relativity JO - Journal of the American Mathematical Society PY - 2010 SP - 345 EP - 382 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00655-9/ DO - 10.1090/S0894-0347-09-00655-9 ID - 10_1090_S0894_0347_09_00655_9 ER -
%0 Journal Article %A Klainerman, Sergiu %A Rodnianski, Igor %T On the breakdown criterion in general relativity %J Journal of the American Mathematical Society %D 2010 %P 345-382 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00655-9/ %R 10.1090/S0894-0347-09-00655-9 %F 10_1090_S0894_0347_09_00655_9
Klainerman, Sergiu; Rodnianski, Igor. On the breakdown criterion in general relativity. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 345-382. doi: 10.1090/S0894-0347-09-00655-9
[1] On long-time evolution in general relativity and geometrization of 3-manifolds Comm. Math. Phys. 2001 533 567
[2] , , Remarks on the breakdown of smooth solutions for the 3-D Euler equations Comm. Math. Phys. 1984 61 66
[3] Théorème dâexistence pour certains systèmes dâéquations aux dérivées partielles non linéaires Acta Math. 1952 141 225
[4] , The global nonlinear stability of the Minkowski space 1993
[5] The wave equation on a curved space-time 1975
[6] , The large scale structure of space-time 1973
[7] , The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties Comm. Math. Phys. 1982 171 191
[8] , The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. II. Completion of proof Comm. Math. Phys. 1982 193 212
[9] , , Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity Arch. Rational Mech. Anal. 1976
[10] PDE as a unified subject Geom. Funct. Anal. 2000 279 315
[11] , Finite energy solutions of the Yang-Mills equations in ð³âºÂ¹ Ann. of Math. (2) 1995 39 119
[12] , Causal geometry of Einstein-vacuum spacetimes with finite curvature flux Invent. Math. 2005 437 529
[13] , A geometric approach to the Littlewood-Paley theory Geom. Funct. Anal. 2006 126 163
[14] , Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux Geom. Funct. Anal. 2006 164 229
[15] , On the radius of injectivity of null hypersurfaces J. Amer. Math. Soc. 2008 775 795
[16] , A Kirchoff-Sobolev parametrix for the wave equation and applications J. Hyperbolic Differ. Equ. 2007 401 433
[17] An integral equation for spacetime curvature in general relativity 2006 109 146
Cité par Sources :