On the breakdown criterion in general relativity
Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 345-382

Voir la notice de l'article provenant de la source American Mathematical Society

We give a geometric criterion for the breakdown of an Einstein-vacuum space-time foliated by a constant mean curvature, or maximal, foliation. More precisely we show that the foliated space-time can be extended as long as the second fundamental form and the first derivatives of the logarithm of the lapse of the foliation remain uniformly bounded. We make no restrictions on the size of the initial data. The paper uses heavily the results of the authors’ previous papers.
DOI : 10.1090/S0894-0347-09-00655-9

Klainerman, Sergiu 1 ; Rodnianski, Igor 1

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_09_00655_9,
     author = {Klainerman, Sergiu and Rodnianski, Igor},
     title = {On the breakdown criterion in general relativity},
     journal = {Journal of the American Mathematical Society},
     pages = {345--382},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00655-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00655-9/}
}
TY  - JOUR
AU  - Klainerman, Sergiu
AU  - Rodnianski, Igor
TI  - On the breakdown criterion in general relativity
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 345
EP  - 382
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00655-9/
DO  - 10.1090/S0894-0347-09-00655-9
ID  - 10_1090_S0894_0347_09_00655_9
ER  - 
%0 Journal Article
%A Klainerman, Sergiu
%A Rodnianski, Igor
%T On the breakdown criterion in general relativity
%J Journal of the American Mathematical Society
%D 2010
%P 345-382
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00655-9/
%R 10.1090/S0894-0347-09-00655-9
%F 10_1090_S0894_0347_09_00655_9
Klainerman, Sergiu; Rodnianski, Igor. On the breakdown criterion in general relativity. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 345-382. doi: 10.1090/S0894-0347-09-00655-9

[1] Anderson, Michael T. On long-time evolution in general relativity and geometrization of 3-manifolds Comm. Math. Phys. 2001 533 567

[2] Beale, J. T., Kato, T., Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations Comm. Math. Phys. 1984 61 66

[3] Fourã¨S-Bruhat, Y. Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires Acta Math. 1952 141 225

[4] Christodoulou, Demetrios, Klainerman, Sergiu The global nonlinear stability of the Minkowski space 1993

[5] Friedlander, F. G. The wave equation on a curved space-time 1975

[6] Hawking, S. W., Ellis, G. F. R. The large scale structure of space-time 1973

[7] Eardley, Douglas M., Moncrief, Vincent The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. I. Local existence and smoothness properties Comm. Math. Phys. 1982 171 191

[8] Eardley, Douglas M., Moncrief, Vincent The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski space. II. Completion of proof Comm. Math. Phys. 1982 193 212

[9] Hughes, Thomas J. R., Kato, Tosio, Marsden, Jerrold E. Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity Arch. Rational Mech. Anal. 1976

[10] Klainerman, Sergiu PDE as a unified subject Geom. Funct. Anal. 2000 279 315

[11] Klainerman, S., Machedon, M. Finite energy solutions of the Yang-Mills equations in 𝐑³⁺¹ Ann. of Math. (2) 1995 39 119

[12] Klainerman, Sergiu, Rodnianski, Igor Causal geometry of Einstein-vacuum spacetimes with finite curvature flux Invent. Math. 2005 437 529

[13] Klainerman, S., Rodnianski, I. A geometric approach to the Littlewood-Paley theory Geom. Funct. Anal. 2006 126 163

[14] Klainerman, S., Rodnianski, I. Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux Geom. Funct. Anal. 2006 164 229

[15] Klainerman, Sergiu, Rodnianski, Igor On the radius of injectivity of null hypersurfaces J. Amer. Math. Soc. 2008 775 795

[16] Klainerman, Sergiu, Rodnianski, Igor A Kirchoff-Sobolev parametrix for the wave equation and applications J. Hyperbolic Differ. Equ. 2007 401 433

[17] Moncrief, Vincent An integral equation for spacetime curvature in general relativity 2006 109 146

Cité par Sources :