Bertrand, Daniel  1 ; Pillay, Anand  2
@article{10_1090_S0894_0347_09_00653_5,
author = {Bertrand, Daniel and Pillay, Anand},
title = {A {Lindemann-Weierstrass} theorem for semi-abelian varieties over function fields},
journal = {Journal of the American Mathematical Society},
pages = {491--533},
year = {2010},
volume = {23},
number = {2},
doi = {10.1090/S0894-0347-09-00653-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00653-5/}
}
TY - JOUR AU - Bertrand, Daniel AU - Pillay, Anand TI - A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields JO - Journal of the American Mathematical Society PY - 2010 SP - 491 EP - 533 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00653-5/ DO - 10.1090/S0894-0347-09-00653-5 ID - 10_1090_S0894_0347_09_00653_5 ER -
%0 Journal Article %A Bertrand, Daniel %A Pillay, Anand %T A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields %J Journal of the American Mathematical Society %D 2010 %P 491-533 %V 23 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00653-5/ %R 10.1090/S0894-0347-09-00653-5 %F 10_1090_S0894_0347_09_00653_5
Bertrand, Daniel; Pillay, Anand. A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 491-533. doi: 10.1090/S0894-0347-09-00653-5
[1] Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part Compositio Math. 1992 1 24
[2] Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups Amer. J. Math. 1972 1195 1204
[3] Schanuel’s conjecture for non-isoconstant elliptic curves over function fields 2008 41 62
[4] Anti-affine algebraic groups J. Algebra 2009 934 952
[5] , The algebraic independence of Weierstrass functions and some related numbers Acta Arith. 1977 111 149
[6] “1-motifs” et formes automorphes (théorie arithmétique des domaines de Siegel) 1983 43 106
[7] Differential algebraic groups of finite dimension 1992
[8] Differential algebra and Diophantine geometry 1994
[9] , , On the locus of Hodge classes J. Amer. Math. Soc. 1995 483 506
[10] A note on Manin’s theorem of the kernel Amer. J. Math. 1991 387 389
[11] Manin’s proof of the Mordell conjecture over function fields Enseign. Math. (2) 1990 393 427
[12] The universal vectorial bi-extension and 𝑝-adic heights Invent. Math. 1991 631 650
[13] Théorie de Hodge. II Inst. Hautes Études Sci. Publ. Math. 1971 5 57
[14] Number theory. IV 1998
[15] The Mordell-Lang conjecture for function fields J. Amer. Math. Soc. 1996 667 690
[16] , On the differentiation of de Rham cohomology classes with respect to parameters J. Math. Kyoto Univ. 1968 199 213
[17] Differential algebra and algebraic groups 1973
[18] Differential algebraic groups 1985
[19] Algebraic groups and algebraic dependence Amer. J. Math. 1968 1151 1164
[20] , Quantifier elimination for algebraic 𝐷-groups Trans. Amer. Math. Soc. 2006 167 181
[21] Systèmes différentiels involutifs 2005
[22] Rational points on algebraic curves over function fields Izv. Akad. Nauk SSSR Ser. Mat. 1963 1395 1440
[23] Manin kernels 2000 1 21
[24] , Differential Galois theory. III. Some inverse problems Illinois J. Math. 1997 453 461
[25] , Universal extensions and one dimensional crystalline cohomology 1974
[26] Some foundational questions concerning differential algebraic groups Pacific J. Math. 1997 179 200
[27] , , Model theory of fields 2006
[28] Algebraic 𝐷-groups and differential Galois theory Pacific J. Math. 2004 343 360
[29] , Jet spaces of varieties over differential and difference fields Selecta Math. (N.S.) 2003 579 599
[30] , Variation of mixed Hodge structure. I Invent. Math. 1985 489 542
Cité par Sources :