A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields
Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 491-533 Cet article a éte moissonné depuis la source American Mathematical Society

Voir la notice de l'article

We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a $\mathbb {Q}$-linearly independent set of algebraic numbers are algebraically independent), replacing $\mathbb {Q}^{alg}$ by $\mathbb {C}(t)^{alg}$ and $\mathbb {G}_{m}^{n}$ by a semi-abelian variety over $\mathbb {C}(t)^{alg}$. Both the formulations of our results and the methods are differential algebraic in nature.
DOI : 10.1090/S0894-0347-09-00653-5

Bertrand, Daniel  1   ; Pillay, Anand  2

1 Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Case 247, 4, Place Jussieu, F-75252 Paris Cedex 05, France
2 School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
@article{10_1090_S0894_0347_09_00653_5,
     author = {Bertrand, Daniel and Pillay, Anand},
     title = {A {Lindemann-Weierstrass} theorem for semi-abelian varieties over function fields},
     journal = {Journal of the American Mathematical Society},
     pages = {491--533},
     year = {2010},
     volume = {23},
     number = {2},
     doi = {10.1090/S0894-0347-09-00653-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00653-5/}
}
TY  - JOUR
AU  - Bertrand, Daniel
AU  - Pillay, Anand
TI  - A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 491
EP  - 533
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00653-5/
DO  - 10.1090/S0894-0347-09-00653-5
ID  - 10_1090_S0894_0347_09_00653_5
ER  - 
%0 Journal Article
%A Bertrand, Daniel
%A Pillay, Anand
%T A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields
%J Journal of the American Mathematical Society
%D 2010
%P 491-533
%V 23
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00653-5/
%R 10.1090/S0894-0347-09-00653-5
%F 10_1090_S0894_0347_09_00653_5
Bertrand, Daniel; Pillay, Anand. A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 491-533. doi: 10.1090/S0894-0347-09-00653-5

[1] André, Yves Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part Compositio Math. 1992 1 24

[2] Ax, James Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups Amer. J. Math. 1972 1195 1204

[3] Bertrand, Daniel Schanuel’s conjecture for non-isoconstant elliptic curves over function fields 2008 41 62

[4] Brion, Michel Anti-affine algebraic groups J. Algebra 2009 934 952

[5] Brownawell, W. Dale, Kubota, K. K. The algebraic independence of Weierstrass functions and some related numbers Acta Arith. 1977 111 149

[6] Brylinski, Jean-Luc “1-motifs” et formes automorphes (théorie arithmétique des domaines de Siegel) 1983 43 106

[7] Buium, Alexandru Differential algebraic groups of finite dimension 1992

[8] Buium, Alexandru Differential algebra and Diophantine geometry 1994

[9] Cattani, Eduardo, Deligne, Pierre, Kaplan, Aroldo On the locus of Hodge classes J. Amer. Math. Soc. 1995 483 506

[10] Chai, Ching-Li A note on Manin’s theorem of the kernel Amer. J. Math. 1991 387 389

[11] Coleman, Robert F. Manin’s proof of the Mordell conjecture over function fields Enseign. Math. (2) 1990 393 427

[12] Coleman, Robert F. The universal vectorial bi-extension and 𝑝-adic heights Invent. Math. 1991 631 650

[13] Deligne, Pierre Théorie de Hodge. II Inst. Hautes Études Sci. Publ. Math. 1971 5 57

[14] Number theory. IV 1998

[15] Hrushovski, Ehud The Mordell-Lang conjecture for function fields J. Amer. Math. Soc. 1996 667 690

[16] Katz, Nicholas M., Oda, Tadao On the differentiation of de Rham cohomology classes with respect to parameters J. Math. Kyoto Univ. 1968 199 213

[17] Kolchin, E. R. Differential algebra and algebraic groups 1973

[18] Kolchin, E. R. Differential algebraic groups 1985

[19] Kolchin, E. R. Algebraic groups and algebraic dependence Amer. J. Math. 1968 1151 1164

[20] Kowalski, Piotr, Pillay, Anand Quantifier elimination for algebraic 𝐷-groups Trans. Amer. Math. Soc. 2006 167 181

[21] Malgrange, Bernard Systèmes différentiels involutifs 2005

[22] Manin, Ju. I. Rational points on algebraic curves over function fields Izv. Akad. Nauk SSSR Ser. Mat. 1963 1395 1440

[23] Marker, David Manin kernels 2000 1 21

[24] Marker, David, Pillay, Anand Differential Galois theory. III. Some inverse problems Illinois J. Math. 1997 453 461

[25] Mazur, B., Messing, William Universal extensions and one dimensional crystalline cohomology 1974

[26] Pillay, Anand Some foundational questions concerning differential algebraic groups Pacific J. Math. 1997 179 200

[27] Marker, David, Messmer, Margit, Pillay, Anand Model theory of fields 2006

[28] Pillay, Anand Algebraic 𝐷-groups and differential Galois theory Pacific J. Math. 2004 343 360

[29] Pillay, Anand, Ziegler, Martin Jet spaces of varieties over differential and difference fields Selecta Math. (N.S.) 2003 579 599

[30] Steenbrink, Joseph, Zucker, Steven Variation of mixed Hodge structure. I Invent. Math. 1985 489 542

Cité par Sources :