Gérard-Varet, David  1 ; Dormy, Emmanuel  2
@article{10_1090_S0894_0347_09_00652_3,
author = {G\'erard-Varet, David and Dormy, Emmanuel},
title = {On the ill-posedness of the {Prandtl} equation},
journal = {Journal of the American Mathematical Society},
pages = {591--609},
year = {2010},
volume = {23},
number = {2},
doi = {10.1090/S0894-0347-09-00652-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00652-3/}
}
TY - JOUR AU - Gérard-Varet, David AU - Dormy, Emmanuel TI - On the ill-posedness of the Prandtl equation JO - Journal of the American Mathematical Society PY - 2010 SP - 591 EP - 609 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00652-3/ DO - 10.1090/S0894-0347-09-00652-3 ID - 10_1090_S0894_0347_09_00652_3 ER -
%0 Journal Article %A Gérard-Varet, David %A Dormy, Emmanuel %T On the ill-posedness of the Prandtl equation %J Journal of the American Mathematical Society %D 2010 %P 591-609 %V 23 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00652-3/ %R 10.1090/S0894-0347-09-00652-3 %F 10_1090_S0894_0347_09_00652_3
Gérard-Varet, David; Dormy, Emmanuel. On the ill-posedness of the Prandtl equation. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 591-609. doi: 10.1090/S0894-0347-09-00652-3
[1] Homogeneous hydrostatic flows with convex velocity profiles Nonlinearity 1999 495 512
[2] , Theory of ordinary differential equations 1955
[3] Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation Acta Math. Sin. (Engl. Ser.) 2000 207 218
[4] , Blowup of solutions of the unsteady Prandtl’s equation Comm. Pure Appl. Math. 1997 1287 1293
[5] On the derivation of homogeneous hydrostatic equations M2AN Math. Model. Numer. Anal. 1999 965 970
[6] On the nonlinear instability of Euler and Prandtl equations Comm. Pure Appl. Math. 2000 1067 1091
[7] , Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations Commun. Math. Sci. 2003 293 316
[8] Perturbation theory for linear operators 1995
[9] , , Well-posedness of the boundary layer equations SIAM J. Math. Anal. 2003 987 1004
[10] , Mathematical models in boundary layer theory 1999
[11] , Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations Comm. Math. Phys. 1998 433 461
[12] , Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution Comm. Math. Phys. 1998 463 491
[13] , On the global existence of solutions to the Prandtl’s system Adv. Math. 2004 88 133
Cité par Sources :