Existence of minimal models for varieties of log general type II
Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 469-490

Voir la notice de l'article provenant de la source American Mathematical Society

Assuming finite generation in dimension $n-1$, we prove that pl-flips exist in dimension $n$.
DOI : 10.1090/S0894-0347-09-00651-1

Hacon, Christopher 1 ; M$^{c}$Kernan, James 2

1 Department of Mathematics, University of Utah, 155 South 1400 East, JWB 233, Salt Lake City, Utah 84112
2 Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106 and Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_09_00651_1,
     author = {Hacon, Christopher and M$^{c}$Kernan, James},
     title = {Existence of minimal models for varieties of log general type {II}},
     journal = {Journal of the American Mathematical Society},
     pages = {469--490},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00651-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00651-1/}
}
TY  - JOUR
AU  - Hacon, Christopher
AU  - M$^{c}$Kernan, James
TI  - Existence of minimal models for varieties of log general type II
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 469
EP  - 490
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00651-1/
DO  - 10.1090/S0894-0347-09-00651-1
ID  - 10_1090_S0894_0347_09_00651_1
ER  - 
%0 Journal Article
%A Hacon, Christopher
%A M$^{c}$Kernan, James
%T Existence of minimal models for varieties of log general type II
%J Journal of the American Mathematical Society
%D 2010
%P 469-490
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00651-1/
%R 10.1090/S0894-0347-09-00651-1
%F 10_1090_S0894_0347_09_00651_1
Hacon, Christopher; M$^{c}$Kernan, James. Existence of minimal models for varieties of log general type II. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 469-490. doi: 10.1090/S0894-0347-09-00651-1

[1] Ambro, Florin Restrictions of log canonical algebras of general type J. Math. Sci. Univ. Tokyo 2006 409 437

[2] Corti, Alessio 3-fold flips after Shokurov 2007 18 48

[3] Ein, Lawrence, Lazarsfeld, Robert, Mustaå£Äƒ, Mircea, Nakamaye, Michael, Popa, Mihnea Asymptotic invariants of base loci Ann. Inst. Fourier (Grenoble) 2006 1701 1734

[4] Hacon, Christopher D., Mckernan, James Boundedness of pluricanonical maps of varieties of general type Invent. Math. 2006 1 25

[5] Flips for 3-folds and 4-folds 2007

[6] Kawamata, Yujiro On the extension problem of pluricanonical forms 1999 193 207

[7] Kollã¡R, Jã¡Nos, Mori, Shigefumi Birational geometry of algebraic varieties 1998

[8] Lazarsfeld, Robert Positivity in algebraic geometry. I 2004

[9] Lazarsfeld, Robert Positivity in algebraic geometry. II 2004

[10] Nakayama, Noboru Zariski-decomposition and abundance 2004

[11] Shokurov, V. V. Prelimiting flips Tr. Mat. Inst. Steklova 2003 82 219

[12] Siu, Yum-Tong Invariance of plurigenera Invent. Math. 1998 661 673

[13] Szabã³, Endre Divisorial log terminal singularities J. Math. Sci. Univ. Tokyo 1994 631 639

[14] Takayama, Shigeharu Pluricanonical systems on algebraic varieties of general type Invent. Math. 2006 551 587

Cité par Sources :