Voir la notice de l'article provenant de la source American Mathematical Society
Adamczak, RadosÅaw 1 ; Litvak, Alexander 2 ; Pajor, Alain 3 ; Tomczak-Jaegermann, Nicole 2
@article{10_1090_S0894_0347_09_00650_X,
author = {Adamczak, Rados\r{A}aw and Litvak, Alexander and Pajor, Alain and Tomczak-Jaegermann, Nicole},
title = {Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles},
journal = {Journal of the American Mathematical Society},
pages = {535--561},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2010},
doi = {10.1090/S0894-0347-09-00650-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00650-X/}
}
TY - JOUR AU - Adamczak, RadosÅaw AU - Litvak, Alexander AU - Pajor, Alain AU - Tomczak-Jaegermann, Nicole TI - Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles JO - Journal of the American Mathematical Society PY - 2010 SP - 535 EP - 561 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00650-X/ DO - 10.1090/S0894-0347-09-00650-X ID - 10_1090_S0894_0347_09_00650_X ER -
%0 Journal Article %A Adamczak, RadosÅaw %A Litvak, Alexander %A Pajor, Alain %A Tomczak-Jaegermann, Nicole %T Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles %J Journal of the American Mathematical Society %D 2010 %P 535-561 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00650-X/ %R 10.1090/S0894-0347-09-00650-X %F 10_1090_S0894_0347_09_00650_X
Adamczak, RadosÅaw; Litvak, Alexander; Pajor, Alain; Tomczak-Jaegermann, Nicole. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 535-561. doi: 10.1090/S0894-0347-09-00650-X
[1] Sampling convex bodies: a random matrix approach Proc. Amer. Math. Soc. 2007 1293 1303
[2] , Limit of the smallest eigenvalue of a large-dimensional sample covariance matrix Ann. Probab. 1993 1275 1294
[3] Convex set functions in ð-space Period. Math. Hungar. 1975 111 136
[4] The Brunn-Minkowski inequality in Gauss space Invent. Math. 1975 207 216
[5] Random points in isotropic convex sets 1999 53 58
[6] , Local operator theory, random matrices and Banach spaces 2001 317 366
[7] , , Random points in isotropic unconditional convex bodies J. London Math. Soc. (2) 2005 779 798
[8] , Concentration property on probability spaces Adv. Math. 2000 77 106
[9] , ð¿_{ð}-moments of random vectors via majorizing measures Adv. Math. 2007 798 823
[10] , , Random walks and an ð*(ðâµ) volume algorithm for convex bodies Random Structures Algorithms 1997 1 50
[11] , Concentration around the mean for maxima of empirical processes Ann. Probab. 2005 1060 1077
[12] On Talagrandâs deviation inequalities for product measures ESAIM Probab. Statist. 1995/97 63 87
[13] The concentration of measure phenomenon 2001
[14] , Probability in Banach spaces 1991
[15] On weakly bounded empirical processes Math. Ann. 2008 293 314
[16] , On singular values of matrices with independent rows Bernoulli 2006 761 773
[17] , , Reconstruction and subgaussian operators in asymptotic geometric analysis Geom. Funct. Anal. 2007 1248 1282
[18] , Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed ð-dimensional space 1989 64 104
[19] Concentration of mass on convex bodies Geom. Funct. Anal. 2006 1021 1049
[20] Random vectors in the isotropic position J. Funct. Anal. 1999 60 72
[21] Convex bodies: the Brunn-Minkowski theory 1993
[22] New concentration inequalities in product spaces Invent. Math. 1996 505 563
[23] , Weak convergence and empirical processes 1996
Cité par Sources :