Voir la notice de l'article provenant de la source American Mathematical Society
Birkar, Caucher 1 ; Cascini, Paolo 2 ; Hacon, Christopher 3 ; McKernan, James 4
@article{10_1090_S0894_0347_09_00649_3,
     author = {Birkar, Caucher and Cascini, Paolo and Hacon, Christopher and McKernan, James},
     title = {Existence of minimal models for varieties of log general type},
     journal = {Journal of the American Mathematical Society},
     pages = {405--468},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00649-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00649-3/}
}
                      
                      
                    TY - JOUR AU - Birkar, Caucher AU - Cascini, Paolo AU - Hacon, Christopher AU - McKernan, James TI - Existence of minimal models for varieties of log general type JO - Journal of the American Mathematical Society PY - 2010 SP - 405 EP - 468 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00649-3/ DO - 10.1090/S0894-0347-09-00649-3 ID - 10_1090_S0894_0347_09_00649_3 ER -
%0 Journal Article %A Birkar, Caucher %A Cascini, Paolo %A Hacon, Christopher %A McKernan, James %T Existence of minimal models for varieties of log general type %J Journal of the American Mathematical Society %D 2010 %P 405-468 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00649-3/ %R 10.1090/S0894-0347-09-00649-3 %F 10_1090_S0894_0347_09_00649_3
Birkar, Caucher; Cascini, Paolo; Hacon, Christopher; McKernan, James. Existence of minimal models for varieties of log general type. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 405-468. doi: 10.1090/S0894-0347-09-00649-3
[1] , , Termination of (many) 4-dimensional log flips Invent. Math. 2007 433 448
[2] Ascending chain condition for log canonical thresholds and termination of log flips Duke Math. J. 2007 173 180
[3] Lie groups 2004
[4] , , Singular Kähler-Einstein metrics J. Amer. Math. Soc. 2009 607 639
[5] Termination of 4-fold canonical flips Publ. Res. Inst. Math. Sci. 2004 231 237
[6] , A canonical bundle formula J. Differential Geom. 2000 167 188
[7] , , Towards the ample cone of \overlineð_{ð,ð} J. Amer. Math. Soc. 2002 273 294
[8] Flips for 3-folds and 4-folds 2007
[9] Algebraic geometry 1977
[10] , Log canonical models for the moduli space of curves: the first divisorial contraction Trans. Amer. Math. Soc. 2009 4471 4489
[11] , Mori dream spaces and GIT Michigan Math. J. 2000 331 348
[12] Inversion of adjunction on log canonicity Invent. Math. 2007 129 133
[13] The Zariski decomposition of log-canonical divisors 1987 425 433
[14] Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces Ann. of Math. (2) 1988 93 163
[15] On the length of an extremal rational curve Invent. Math. 1991 609 611
[16] Flops connect minimal models Publ. Res. Inst. Math. Sci. 2008 419 423
[17] , , Introduction to the minimal model problem 1987 283 360
[18] Flips, flops, minimal models, etc 1991 113 199
[19] Effective base point freeness Math. Ann. 1993 595 605
[20] Flips and abundance for algebraic threefolds 1992 1 258
[21] , Birational geometry of algebraic varieties 1998
[22] Positivity in algebraic geometry. II 2004
[23] Moduli stacks \overlineð¿_{ð,ð} Mosc. Math. J. 2004
[24] Termination of flops for 4-folds Amer. J. Math. 1991 835 859
[25] Flip theorem and the existence of minimal models for 3-folds J. Amer. Math. Soc. 1988 117 253
[26] Stability of projective varieties Enseign. Math. (2) 1977 39 110
[27] Zariski-decomposition and abundance 2004
[28] The diagram method for 3-folds and its application to the Kähler cone and Picard number of Calabi-Yau 3-folds. I 1996 261 328
[29] Towards a Mori theory on compact Kähler threefolds. II Math. Ann. 1998 729 764
[30] Three-dimensional log perestroikas Izv. Ross. Akad. Nauk Ser. Mat. 1992 105 203
[31] 3-fold log models J. Math. Sci. 1996 2667 2699
[32] Letters of a bi-rationalist. I. A projectivity criterion 1997 143 152
[33] Prelimiting flips Tr. Mat. Inst. Steklova 2003 82 219
[34] Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips Tr. Mat. Inst. Steklova 2004 328 351
[35] Bimeromorphic geometry of algebraic and analytic threefolds 1982 1 34
Cité par Sources :