Quantized symplectic actions and 𝑊-algebras
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 35-59

Voir la notice de l'article provenant de la source American Mathematical Society

With a nilpotent element in a semisimple Lie algebra $\mathfrak {g}$ one associates a finitely generated associative algebra $\mathcal {W}$ called a $W$-algebra of finite type. This algebra is obtained from the universal enveloping algebra $U(\mathfrak {g})$ by a certain Hamiltonian reduction. We observe that $\mathcal {W}$ is the invariant algebra for an action of a reductive group $G$ with Lie algebra $\mathfrak {g}$ on a quantized symplectic affine variety and use this observation to study $\mathcal {W}$. Our results include an alternative definition of $\mathcal {W}$, a relation between the sets of prime ideals of $\mathcal {W}$ and of the corresponding universal enveloping algebra, the existence of a one-dimensional representation of $\mathcal {W}$ in the case of classical $\mathfrak {g}$ and the separation of elements of $\mathcal {W}$ by finite-dimensional representations.
DOI : 10.1090/S0894-0347-09-00648-1

Losev, Ivan 1

1 Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
@article{10_1090_S0894_0347_09_00648_1,
     author = {Losev, Ivan},
     title = {Quantized symplectic actions and {\dh}‘Š-algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {35--59},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00648-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00648-1/}
}
TY  - JOUR
AU  - Losev, Ivan
TI  - Quantized symplectic actions and 𝑊-algebras
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 35
EP  - 59
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00648-1/
DO  - 10.1090/S0894-0347-09-00648-1
ID  - 10_1090_S0894_0347_09_00648_1
ER  - 
%0 Journal Article
%A Losev, Ivan
%T Quantized symplectic actions and 𝑊-algebras
%J Journal of the American Mathematical Society
%D 2010
%P 35-59
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00648-1/
%R 10.1090/S0894-0347-09-00648-1
%F 10_1090_S0894_0347_09_00648_1
Losev, Ivan. Quantized symplectic actions and 𝑊-algebras. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 35-59. doi: 10.1090/S0894-0347-09-00648-1

[1] Bezrukavnikov, R., Kaledin, D. Fedosov quantization in algebraic context Mosc. Math. J. 2004

[2] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D. Deformation theory and quantization. I. Deformations of symplectic structures Ann. Physics 1978 61 110

[3] Borho, Walter, Kraft, Hanspeter Über die Gelfand-Kirillov-Dimension Math. Ann. 1976 1 24

[4] Brundan, Jonathan, Goodwin, Simon M. Good grading polytopes Proc. Lond. Math. Soc. (3) 2007 155 180

[5] Brundan, Jonathan, Kleshchev, Alexander Shifted Yangians and finite 𝑊-algebras Adv. Math. 2006 136 195

[6] Brundan, Jonathan, Kleshchev, Alexander Representations of shifted Yangians and finite 𝑊-algebras Mem. Amer. Math. Soc. 2008

[7] Chriss, Neil, Ginzburg, Victor Representation theory and complex geometry 1997

[8] De Sole, Alberto, Kac, Victor G. Finite vs affine 𝑊-algebras Jpn. J. Math. 2006 137 261

[9] Farkas, Daniel R. A ring-theorist’s description of Fedosov quantization Lett. Math. Phys. 2000 161 177

[10] Fedosov, Boris V. A simple geometrical construction of deformation quantization J. Differential Geom. 1994 213 238

[11] Fedosov, Boris Deformation quantization and index theory 1996 325

[12] Gan, Wee Liang, Ginzburg, Victor Quantization of Slodowy slices Int. Math. Res. Not. 2002 243 255

[13] Ginzburg, Victor On primitive ideals Selecta Math. (N.S.) 2003 379 407

[14] Ginzburg, Victor Harish-Chandra bimodules for quantized Slodowy slices Represent. Theory 2009 236 271

[15] Gutt, Simone, Rawnsley, John Equivalence of star products on a symplectic manifold J. Geom. Phys. 1999 347 392

[16] Jantzen, Jens Carsten Einhüllende Algebren halbeinfacher Lie-Algebren 1983

[17] Jantzen, Jens Carsten Nilpotent orbits in representation theory 2004 1 211

[18] Kac, Victor Vertex algebras for beginners 1998

[19] Kostant, Bertram On Whittaker vectors and representation theory Invent. Math. 1978 101 184

[20] Kraft, Hanspeter, Procesi, Claudio Closures of conjugacy classes of matrices are normal Invent. Math. 1979 227 247

[21] Kraft, Hanspeter, Procesi, Claudio On the geometry of conjugacy classes in classical groups Comment. Math. Helv. 1982 539 602

[22] Losev, I. V. Symplectic slices for actions of reductive groups Mat. Sb. 2006 75 86

[23] Mcgovern, William M. Completely prime maximal ideals and quantization Mem. Amer. Math. Soc. 1994

[24] Må“Glin, C. Modèle de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes des algèbres de Lie semisimples complexes. II Math. Scand. 1988 5 35

[25] Mcconnell, J. C., Robson, J. C. Noncommutative Noetherian rings 1987

[26] Premet, Alexander Special transverse slices and their enveloping algebras Adv. Math. 2002 1 55

[27] Premet, Alexander Enveloping algebras of Slodowy slices and the Joseph ideal J. Eur. Math. Soc. (JEMS) 2007 487 543

[28] Premet, Alexander Primitive ideals, non-restricted representations and finite 𝑊-algebras Mosc. Math. J. 2007

[29] Vinberg, È. B., Popov, V. L. Invariant theory 1989

[30] Slodowy, Peter Simple singularities and simple algebraic groups 1980

[31] Warfield, R. B., Jr. Prime ideals in ring extensions J. London Math. Soc. (2) 1983 453 460

[32] Xu, Ping Fedosov *-products and quantum momentum maps Comm. Math. Phys. 1998 167 197

Cité par Sources :