Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_09_00648_1,
author = {Losev, Ivan},
title = {Quantized symplectic actions and {\dh}-algebras},
journal = {Journal of the American Mathematical Society},
pages = {35--59},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2010},
doi = {10.1090/S0894-0347-09-00648-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00648-1/}
}
TY - JOUR AU - Losev, Ivan TI - Quantized symplectic actions and ð-algebras JO - Journal of the American Mathematical Society PY - 2010 SP - 35 EP - 59 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00648-1/ DO - 10.1090/S0894-0347-09-00648-1 ID - 10_1090_S0894_0347_09_00648_1 ER -
%0 Journal Article %A Losev, Ivan %T Quantized symplectic actions and ð-algebras %J Journal of the American Mathematical Society %D 2010 %P 35-59 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00648-1/ %R 10.1090/S0894-0347-09-00648-1 %F 10_1090_S0894_0347_09_00648_1
Losev, Ivan. Quantized symplectic actions and ð-algebras. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 35-59. doi: 10.1090/S0894-0347-09-00648-1
[1] , Fedosov quantization in algebraic context Mosc. Math. J. 2004
[2] , , , , Deformation theory and quantization. I. Deformations of symplectic structures Ann. Physics 1978 61 110
[3] , Ãber die Gelfand-Kirillov-Dimension Math. Ann. 1976 1 24
[4] , Good grading polytopes Proc. Lond. Math. Soc. (3) 2007 155 180
[5] , Shifted Yangians and finite ð-algebras Adv. Math. 2006 136 195
[6] , Representations of shifted Yangians and finite ð-algebras Mem. Amer. Math. Soc. 2008
[7] , Representation theory and complex geometry 1997
[8] , Finite vs affine ð-algebras Jpn. J. Math. 2006 137 261
[9] A ring-theoristâs description of Fedosov quantization Lett. Math. Phys. 2000 161 177
[10] A simple geometrical construction of deformation quantization J. Differential Geom. 1994 213 238
[11] Deformation quantization and index theory 1996 325
[12] , Quantization of Slodowy slices Int. Math. Res. Not. 2002 243 255
[13] On primitive ideals Selecta Math. (N.S.) 2003 379 407
[14] Harish-Chandra bimodules for quantized Slodowy slices Represent. Theory 2009 236 271
[15] , Equivalence of star products on a symplectic manifold J. Geom. Phys. 1999 347 392
[16] Einhüllende Algebren halbeinfacher Lie-Algebren 1983
[17] Nilpotent orbits in representation theory 2004 1 211
[18] Vertex algebras for beginners 1998
[19] On Whittaker vectors and representation theory Invent. Math. 1978 101 184
[20] , Closures of conjugacy classes of matrices are normal Invent. Math. 1979 227 247
[21] , On the geometry of conjugacy classes in classical groups Comment. Math. Helv. 1982 539 602
[22] Symplectic slices for actions of reductive groups Mat. Sb. 2006 75 86
[23] Completely prime maximal ideals and quantization Mem. Amer. Math. Soc. 1994
[24] Modèle de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes des algèbres de Lie semisimples complexes. II Math. Scand. 1988 5 35
[25] , Noncommutative Noetherian rings 1987
[26] Special transverse slices and their enveloping algebras Adv. Math. 2002 1 55
[27] Enveloping algebras of Slodowy slices and the Joseph ideal J. Eur. Math. Soc. (JEMS) 2007 487 543
[28] Primitive ideals, non-restricted representations and finite ð-algebras Mosc. Math. J. 2007
[29] , Invariant theory 1989
[30] Simple singularities and simple algebraic groups 1980
[31] Prime ideals in ring extensions J. London Math. Soc. (2) 1983 453 460
[32] Fedosov *-products and quantum momentum maps Comm. Math. Phys. 1998 167 197
Cité par Sources :