The dodecahedral conjecture
Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 299-344

Voir la notice de l'article provenant de la source American Mathematical Society

This article gives a summary of a proof of Fejes Tóth’s dodecahedral conjecture: the volume of a Voronoi polyhedron in a three-dimensional packing of balls of unit radius is at least the volume of a regular dodecahedron of unit inradius.
DOI : 10.1090/S0894-0347-09-00647-X

Hales, Thomas 1 ; McLaughlin, Sean 2

1 Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
2 Department of Mathematics, Carnegie Mellon University, Wean Hall 6113, Pittsburgh, Pennsylvania 15213
@article{10_1090_S0894_0347_09_00647_X,
     author = {Hales, Thomas and McLaughlin, Sean},
     title = {The dodecahedral conjecture},
     journal = {Journal of the American Mathematical Society},
     pages = {299--344},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00647-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00647-X/}
}
TY  - JOUR
AU  - Hales, Thomas
AU  - McLaughlin, Sean
TI  - The dodecahedral conjecture
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 299
EP  - 344
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00647-X/
DO  - 10.1090/S0894-0347-09-00647-X
ID  - 10_1090_S0894_0347_09_00647_X
ER  - 
%0 Journal Article
%A Hales, Thomas
%A McLaughlin, Sean
%T The dodecahedral conjecture
%J Journal of the American Mathematical Society
%D 2010
%P 299-344
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00647-X/
%R 10.1090/S0894-0347-09-00647-X
%F 10_1090_S0894_0347_09_00647_X
Hales, Thomas; McLaughlin, Sean. The dodecahedral conjecture. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 299-344. doi: 10.1090/S0894-0347-09-00647-X

[1] Alefeld, Gã¶Tz, Herzberger, Jã¼Rgen Introduction to interval computations 1983

[2] Bertot, Yves, Castã©Ran, Pierre Interactive theorem proving and program development 2004

[3] Bezdek, Kã¡Roly Isoperimetric inequalities and the dodecahedral conjecture Internat. J. Math. 1997 759 780

[4] Bezdek, Kã¡Roly On a stronger form of Rogers’s lemma and the minimum surface area of Voronoi cells in unit ball packings J. Reine Angew. Math. 2000 131 143

[5] Byrd, Richard H., Nocedal, Jorge, Waltz, Richard A. KNITRO: An integrated package for nonlinear optimization 2006 35 59

[6] Collins, George E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition 1975 134 183

[7] Fejes, L. Über die dichteste Kugellagerung Math. Z. 1943 676 684

[8] Fejes Tã³Th, L. Regular figures 1964

[9] Fejes Tã³Th, Lã¡Szlã³ Lagerungen in der Ebene auf der Kugel und im Raum 1972

[10] Hales, Thomas C. The status of the Kepler conjecture Math. Intelligencer 1994 47 58

[11] Hales, T. C. Sphere packings. I Discrete Comput. Geom. 1997 1 51

[12] Hales, Thomas C. Some algorithms arising in the proof of the Kepler conjecture 2003 489 507

[13] Hales, Thomas C., Ferguson, Samuel P. A formulation of the Kepler conjecture Discrete Comput. Geom. 2006 21 69

[14] Hã¶Rmander, Lars The analysis of linear partial differential operators. II 1983

[15] Hsiang, Wu-Yi On the sphere packing problem and the proof of Kepler’s conjecture Internat. J. Math. 1993 739 831

[16] Kearfott, R. Baker Rigorous global search: continuous problems 1996

[17] Muder, Douglas J. Putting the best face on a VoronoÄ­ polyhedron Proc. London Math. Soc. (3) 1988 329 348

[18] Muder, Douglas J. A new bound on the local density of sphere packings Discrete Comput. Geom. 1993 351 375

[19] Nipkow, Tobias, Bauer, Gertrud, Schultz, Paula Flyspeck. I. Tame graphs 2006 21 35

[20] Paulson, Lawrence C. Isabelle 1994

[21] Press, William H., Teukolsky, Saul A., Vetterling, William T., Flannery, Brian P. Numerical recipes in C 1992

[22] Rogers, C. A. The packing of equal spheres Proc. London Math. Soc. (3) 1958 609 620

[23] Zumkeller, Roland Formal global optimisation with Taylor models 2006 408 422

Cité par Sources :