Voir la notice de l'article provenant de la source American Mathematical Society
Hales, Thomas 1 ; McLaughlin, Sean 2
@article{10_1090_S0894_0347_09_00647_X,
author = {Hales, Thomas and McLaughlin, Sean},
title = {The dodecahedral conjecture},
journal = {Journal of the American Mathematical Society},
pages = {299--344},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2010},
doi = {10.1090/S0894-0347-09-00647-X},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00647-X/}
}
TY - JOUR AU - Hales, Thomas AU - McLaughlin, Sean TI - The dodecahedral conjecture JO - Journal of the American Mathematical Society PY - 2010 SP - 299 EP - 344 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00647-X/ DO - 10.1090/S0894-0347-09-00647-X ID - 10_1090_S0894_0347_09_00647_X ER -
%0 Journal Article %A Hales, Thomas %A McLaughlin, Sean %T The dodecahedral conjecture %J Journal of the American Mathematical Society %D 2010 %P 299-344 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00647-X/ %R 10.1090/S0894-0347-09-00647-X %F 10_1090_S0894_0347_09_00647_X
Hales, Thomas; McLaughlin, Sean. The dodecahedral conjecture. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 299-344. doi: 10.1090/S0894-0347-09-00647-X
[1] , Introduction to interval computations 1983
[2] , Interactive theorem proving and program development 2004
[3] Isoperimetric inequalities and the dodecahedral conjecture Internat. J. Math. 1997 759 780
[4] On a stronger form of Rogersâs lemma and the minimum surface area of Voronoi cells in unit ball packings J. Reine Angew. Math. 2000 131 143
[5] , , KNITRO: An integrated package for nonlinear optimization 2006 35 59
[6] Quantifier elimination for real closed fields by cylindrical algebraic decomposition 1975 134 183
[7] Ãber die dichteste Kugellagerung Math. Z. 1943 676 684
[8] Regular figures 1964
[9] Lagerungen in der Ebene auf der Kugel und im Raum 1972
[10] The status of the Kepler conjecture Math. Intelligencer 1994 47 58
[11] Sphere packings. I Discrete Comput. Geom. 1997 1 51
[12] Some algorithms arising in the proof of the Kepler conjecture 2003 489 507
[13] , A formulation of the Kepler conjecture Discrete Comput. Geom. 2006 21 69
[14] The analysis of linear partial differential operators. II 1983
[15] On the sphere packing problem and the proof of Keplerâs conjecture Internat. J. Math. 1993 739 831
[16] Rigorous global search: continuous problems 1996
[17] Putting the best face on a VoronoÄ polyhedron Proc. London Math. Soc. (3) 1988 329 348
[18] A new bound on the local density of sphere packings Discrete Comput. Geom. 1993 351 375
[19] , , Flyspeck. I. Tame graphs 2006 21 35
[20] Isabelle 1994
[21] , , , Numerical recipes in C 1992
[22] The packing of equal spheres Proc. London Math. Soc. (3) 1958 609 620
[23] Formal global optimisation with Taylor models 2006 408 422
Cité par Sources :