Stable pairs and BPS invariants
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 267-297

Voir la notice de l'article provenant de la source American Mathematical Society

We define the BPS invariants of Gopakumar-Vafa in the case of irreducible curve classes on Calabi-Yau 3-folds. The main tools are the theory of stable pairs in the derived category and Behrend’s constructible function approach to the virtual class. For irreducible curve classes, we prove that the stable pairs’ generating function satisfies the strong BPS rationality conjectures. We define the contribution of each curve $C$ to the BPS invariants and show that the contributions lie between the geometric genus and arithmetic genus of $C$. Complete formulae are derived for nonsingular and nodal curves. A discussion of primitive classes on $K3$ surfaces from the point of view of stable pairs is given in the Appendix via calculations of Kawai-Yoshioka. A proof of the Yau-Zaslow formula for rational curve counts is obtained. A connection is made to the Katz-Klemm-Vafa formula for BPS counts in all genera.
DOI : 10.1090/S0894-0347-09-00646-8

Pandharipande, R. 1 ; Thomas, R. 2

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
2 Department of Mathematics, Imperial College, London, England
@article{10_1090_S0894_0347_09_00646_8,
     author = {Pandharipande, R. and Thomas, R.},
     title = {Stable pairs and {BPS} invariants},
     journal = {Journal of the American Mathematical Society},
     pages = {267--297},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00646-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00646-8/}
}
TY  - JOUR
AU  - Pandharipande, R.
AU  - Thomas, R.
TI  - Stable pairs and BPS invariants
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 267
EP  - 297
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00646-8/
DO  - 10.1090/S0894-0347-09-00646-8
ID  - 10_1090_S0894_0347_09_00646_8
ER  - 
%0 Journal Article
%A Pandharipande, R.
%A Thomas, R.
%T Stable pairs and BPS invariants
%J Journal of the American Mathematical Society
%D 2010
%P 267-297
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00646-8/
%R 10.1090/S0894-0347-09-00646-8
%F 10_1090_S0894_0347_09_00646_8
Pandharipande, R.; Thomas, R. Stable pairs and BPS invariants. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 267-297. doi: 10.1090/S0894-0347-09-00646-8

[1] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[2] Bryan, Jim, Leung, Naichung Conan The enumerative geometry of 𝐾3 surfaces and modular forms J. Amer. Math. Soc. 2000 371 410

[3] He, Min Espaces de modules de systèmes cohérents Internat. J. Math. 1998 545 598

[4] Hosono, Shinobu, Saito, Masa-Hiko, Takahashi, Atsushi Relative Lefschetz action and BPS state counting Internat. Math. Res. Notices 2001 783 816

[5] Huybrechts, D., Lehn, M. Framed modules and their moduli Internat. J. Math. 1995 297 324

[6] Huybrechts, Daniel, Lehn, Manfred The geometry of moduli spaces of sheaves 1997

[7] Katz, Sheldon, Klemm, Albrecht, Vafa, Cumrun M-theory, topological strings and spinning black holes Adv. Theor. Math. Phys. 1999 1445 1537

[8] Kawai, Toshiya, Yoshioka, K\B{O}Ta String partition functions and infinite products Adv. Theor. Math. Phys. 2000 397 485

[9] Le Potier, Joseph Systèmes cohérents et structures de niveau Astérisque 1993 143

[10] Le Potier, J. Faisceaux semi-stables et systèmes cohérents 1995 179 239

[11] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties J. Amer. Math. Soc. 1998 119 174

[12] Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R. Gromov-Witten theory and Donaldson-Thomas theory. I Compos. Math. 2006 1263 1285

[13] Mukai, Shigeru Symplectic structure of the moduli space of sheaves on an abelian or 𝐾3 surface Invent. Math. 1984 101 116

[14] Pandharipande, Rahul, Thomas, Richard P. The 3-fold vertex via stable pairs Geom. Topol. 2009 1835 1876

[15] Schmitt, Alexander H. W. Geometric invariant theory and decorated principal bundles 2008

[16] Schwarz, A., Shapiro, I. Some remarks on Gopakumar-Vafa invariants Pure Appl. Math. Q. 2005 817 826

[17] Thomas, R. P. A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on 𝐾3 fibrations J. Differential Geom. 2000 367 438

[18] Yau, Shing-Tung, Zaslow, Eric BPS states, string duality, and nodal curves on 𝐾3 Nuclear Phys. B 1996 503 512

Cité par Sources :