Actions of 𝔽_{∞} whose II₁ factors and orbit equivalence relations have prescribed fundamental group
Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 383-403

Voir la notice de l'article provenant de la source American Mathematical Society

We show that given any subgroup $\mathcal {F}$ of $\mathbb {R}_+$ which is either countable or belongs to a certain “large” class of uncountable subgroups, there exist continuously many free ergodic measure-preserving actions $\sigma _i$ of the free group with infinitely many generators $\mathbb {F}_\infty$ on probability measure spaces $(X_i,\mu _i)$ such that their associated group measure space II$_1$ factors $M_i=\operatorname {L}^\infty (X_i) \rtimes _{\sigma _i} \mathbb {F}_\infty$ and orbit equivalence relations $\mathcal {R}_i=\mathcal {R} (\mathbb {F}_\infty {\overset {}{\curvearrowright }} X_i)$ have fundamental group equal to $\mathcal {F}$ and with $M_i$ (respectively $\mathcal {R}_i$) stably non-isomorphic. Moreover, these actions can be taken so that $\mathcal {R}_i$ has no outer automorphisms and any automorphism of $M_i$ is unitarily conjugate to an automorphism that acts trivially on the subalgebra $\operatorname {L}^\infty (X_i)$ of $M_i$.
DOI : 10.1090/S0894-0347-09-00644-4

Popa, Sorin 1 ; Vaes, Stefaan 2

1 Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
2 Department of Mathematics, K.U.Leuven, Celestijnenlaan 200B, B–3001 Leuven, Belgium
@article{10_1090_S0894_0347_09_00644_4,
     author = {Popa, Sorin and Vaes, Stefaan},
     title = {Actions of {\dh}”{\textonehalf}_{\^aˆž} whose {II\^a‚} factors and orbit equivalence relations have prescribed fundamental group},
     journal = {Journal of the American Mathematical Society},
     pages = {383--403},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00644-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00644-4/}
}
TY  - JOUR
AU  - Popa, Sorin
AU  - Vaes, Stefaan
TI  - Actions of 𝔽_{∞} whose II₁ factors and orbit equivalence relations have prescribed fundamental group
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 383
EP  - 403
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00644-4/
DO  - 10.1090/S0894-0347-09-00644-4
ID  - 10_1090_S0894_0347_09_00644_4
ER  - 
%0 Journal Article
%A Popa, Sorin
%A Vaes, Stefaan
%T Actions of 𝔽_{∞} whose II₁ factors and orbit equivalence relations have prescribed fundamental group
%J Journal of the American Mathematical Society
%D 2010
%P 383-403
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00644-4/
%R 10.1090/S0894-0347-09-00644-4
%F 10_1090_S0894_0347_09_00644_4
Popa, Sorin; Vaes, Stefaan. Actions of 𝔽_{∞} whose II₁ factors and orbit equivalence relations have prescribed fundamental group. Journal of the American Mathematical Society, Tome 23 (2010) no. 2, pp. 383-403. doi: 10.1090/S0894-0347-09-00644-4

[1] Aaronson, Jon, Nadkarni, Mahendra 𝐿_{∞} eigenvalues and 𝐿₂ spectra of nonsingular transformations Proc. London Math. Soc. (3) 1987 538 570

[2] Burger, M. Kazhdan constants for 𝑆𝐿(3,𝑍) J. Reine Angew. Math. 1991 36 67

[3] Connes, Alain Une classification des facteurs de type 𝐼𝐼𝐼 Ann. Sci. École Norm. Sup. (4) 1973 133 252

[4] Connes, A. A factor of type 𝐼𝐼₁ with countable fundamental group J. Operator Theory 1980 151 153

[5] Connes, A., Jones, V. A 𝐼𝐼₁ factor with two nonconjugate Cartan subalgebras Bull. Amer. Math. Soc. (N.S.) 1982 211 212

[6] Feldman, Jacob, Moore, Calvin C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324

[7] Furman, Alex Orbit equivalence rigidity Ann. of Math. (2) 1999 1083 1108

[8] Furman, Alex Outer automorphism groups of some ergodic equivalence relations Comment. Math. Helv. 2005 157 196

[9] Gaboriau, Damien Invariants 𝑙² de relations d’équivalence et de groupes Publ. Math. Inst. Hautes Études Sci. 2002 93 150

[10] Gaboriau, Damien Coût des relations d’équivalence et des groupes Invent. Math. 2000 41 98

[11] Gaboriau, Damien, Popa, Sorin An uncountable family of nonorbit equivalent actions of 𝔽_{𝕟} J. Amer. Math. Soc. 2005 547 559

[12] Gefter, Sergey L. Outer automorphism group of the ergodic equivalence relation generated by translations of dense subgroup of compact group on its homogeneous space Publ. Res. Inst. Math. Sci. 1996 517 538

[13] Gefter, Sergey L., Golodets, Valentin Ya. Fundamental groups for ergodic actions and actions with unit fundamental groups Publ. Res. Inst. Math. Sci. 1988

[14] Giordano, T., Skandalis, G. Krieger factors isomorphic to their tensor square and pure point spectrum flows J. Funct. Anal. 1985 209 226

[15] Hjorth, Greg A lemma for cost attained Ann. Pure Appl. Logic 2006 87 102

[16] Host, Bernard, Mã©La, Jean-Franã§Ois, Parreau, Franã§Ois Nonsingular transformations and spectral analysis of measures Bull. Soc. Math. France 1991 33 90

[17] Ioana, Adrian, Peterson, Jesse, Popa, Sorin Amalgamated free products of weakly rigid factors and calculation of their symmetry groups Acta Math. 2008 85 153

[18] Kahane, Jean-Pierre, Salem, Raphaã«L Ensembles parfaits et séries trigonométriques 1963 192

[19] Kechris, Alexander S. Classical descriptive set theory 1995

[20] Le Gac, Barthã©Lemy Some properties of Borel subgroups of real numbers Proc. Amer. Math. Soc. 1983 677 680

[21] Mandrekar, V., Nadkarni, M., Patil, D. Singular invariant measures on the line Studia Math. 1970 1 13

[22] Monod, Nicolas, Shalom, Yehuda Orbit equivalence rigidity and bounded cohomology Ann. of Math. (2) 2006 825 878

[23] Murray, F. J., Von Neumann, J. On rings of operators Ann. of Math. (2) 1936 116 229

[24] Murray, F. J., Von Neumann, J. On rings of operators. IV Ann. of Math. (2) 1943 716 808

[25] Nicoara, Remus, Popa, Sorin, Sasyk, Roman On 𝐼𝐼₁ factors arising from 2-cocycles of 𝑤-rigid groups J. Funct. Anal. 2007 230 246

[26] Popa, Sorin On a class of type 𝐼𝐼₁ factors with Betti numbers invariants Ann. of Math. (2) 2006 809 899

[27] Popa, Sorin Strong rigidity of 𝐼𝐼₁ factors arising from malleable actions of 𝑤-rigid groups. II Invent. Math. 2006 409 451

[28] Popa, Sorin On the superrigidity of malleable actions with spectral gap J. Amer. Math. Soc. 2008 981 1000

[29] Popa, Sorin Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions J. Inst. Math. Jussieu 2006 309 332

[30] Popa, Sorin, Shlyakhtenko, Dimitri Universal properties of 𝐿(𝐹_{∞}) in subfactor theory Acta Math. 2003 225 257

[31] Popa, Sorin, Vaes, Stefaan Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups Adv. Math. 2008 833 872

[32] Singer, I. M. Automorphisms of finite factors Amer. J. Math. 1955 117 133

[33] Tã¶Rnquist, Asger Orbit equivalence and actions of 𝔽_{𝕟} J. Symbolic Logic 2006 265 282

[34] Vaes, Stefaan Explicit computations of all finite index bimodules for a family of 𝐼𝐼₁ factors Ann. Sci. Éc. Norm. Supér. (4) 2008 743 788

Cité par Sources :