The dimension of the Torelli group
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 61-105

Voir la notice de l'article provenant de la source American Mathematical Society

We prove that the cohomological dimension of the Torelli group for a closed, connected, orientable surface of genus $g \geq 2$ is equal to $3g-5$. This answers a question of Mess, who proved the lower bound and settled the case of $g=2$. We also find the cohomological dimension of the Johnson kernel (the subgroup of the Torelli group generated by Dehn twists about separating curves) to be $2g-3$. For $g \geq 2$, we prove that the top dimensional homology of the Torelli group is infinitely generated. Finally, we give a new proof of the theorem of Mess that gives a precise description of the Torelli group in genus 2. The main tool is a new contractible complex, called the “complex of minimizing cycles”, on which the Torelli group acts.
DOI : 10.1090/S0894-0347-09-00643-2

Bestvina, Mladen 1 ; Bux, Kai-Uwe 2 ; Margalit, Dan 3

1 Department of Mathematics, University of Utah, 155 S 1400 East, Salt Lake City, Utah 84112-0090
2 Department of Mathematics, University of Virginia, Kerchof Hall 229, Charlottesville, Virginia 22903-4137
3 Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, Massachusetts 02155
@article{10_1090_S0894_0347_09_00643_2,
     author = {Bestvina, Mladen and Bux, Kai-Uwe and Margalit, Dan},
     title = {The dimension of the {Torelli} group},
     journal = {Journal of the American Mathematical Society},
     pages = {61--105},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00643-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00643-2/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Bux, Kai-Uwe
AU  - Margalit, Dan
TI  - The dimension of the Torelli group
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 61
EP  - 105
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00643-2/
DO  - 10.1090/S0894-0347-09-00643-2
ID  - 10_1090_S0894_0347_09_00643_2
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Bux, Kai-Uwe
%A Margalit, Dan
%T The dimension of the Torelli group
%J Journal of the American Mathematical Society
%D 2010
%P 61-105
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00643-2/
%R 10.1090/S0894-0347-09-00643-2
%F 10_1090_S0894_0347_09_00643_2
Bestvina, Mladen; Bux, Kai-Uwe; Margalit, Dan. The dimension of the Torelli group. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 61-105. doi: 10.1090/S0894-0347-09-00643-2

[1] Problems in low-dimensional topology 1997 35 473

[2] Akita, Toshiyuki Homological infiniteness of Torelli groups Topology 2001 213 221

[3] Bestvina, Mladen, Bux, Kai-Uwe, Margalit, Dan Dimension of the Torelli group for 𝑂𝑢𝑡(𝐹_{𝑛}) Invent. Math. 2007 1 32

[4] Bieri, Robert Groupes à dualité de Poincaré C. R. Acad. Sci. Paris Sér. A-B 1971

[5] Birman, Joan S. On Siegel’s modular group Math. Ann. 1971 59 68

[6] Birman, Joan S. Braids, links, and mapping class groups 1974

[7] Birman, Joan S., Lubotzky, Alex, Mccarthy, John Abelian and solvable subgroups of the mapping class groups Duke Math. J. 1983 1107 1120

[8] Borel, A., Serre, J.-P. Corners and arithmetic groups Comment. Math. Helv. 1973 436 491

[9] Brown, Kenneth S. Cohomology of groups 1982

[10] Buser, Peter Geometry and spectra of compact Riemann surfaces 1992

[11] Dehn, Max Papers on group theory and topology 1987

[12] Eilenberg, Samuel, Ganea, Tudor On the Lusternik-Schnirelmann category of abstract groups Ann. of Math. (2) 1957 517 518

[13] Farb, Benson Some problems on mapping class groups and moduli space 2006 11 55

[14] Fomenko, A. T., Fuchs, D. B., Gutenmacher, V. L. Homotopic topology 1986 310

[15] Hain, Richard The rational cohomology ring of the moduli space of abelian 3-folds Math. Res. Lett. 2002 473 491

[16] Harer, John L. Stability of the homology of the mapping class groups of orientable surfaces Ann. of Math. (2) 1985 215 249

[17] Harer, John L. The virtual cohomological dimension of the mapping class group of an orientable surface Invent. Math. 1986 157 176

[18] Hatcher, Allen On triangulations of surfaces Topology Appl. 1991 189 194

[19] Hatcher, Allen Algebraic topology 2002

[20] Imayoshi, Y., Taniguchi, M. An introduction to Teichmüller spaces 1992

[21] Ivanov, N. V. Complexes of curves and Teichmüller spaces Mat. Zametki 1991

[22] Ivanov, Nikolai V. Mapping class groups 2002 523 633

[23] Johnson, Dennis An abelian quotient of the mapping class group \cal𝐼_{𝑔} Math. Ann. 1980 225 242

[24] Johnson, Dennis Conjugacy relations in subgroups of the mapping class group and a group-theoretic description of the Rochlin invariant Math. Ann. 1980 243 263

[25] Johnson, Dennis The structure of the Torelli group. I. A finite set of generators for \cal𝐼 Ann. of Math. (2) 1983 423 442

[26] Johnson, Dennis The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves Topology 1985 113 126

[27] Johnson, F. E. A., Wall, C. T. C. On groups satisfying Poincaré duality Ann. of Math. (2) 1972 592 598

[28] Labute, John P. On the descending central series of groups with a single defining relation J. Algebra 1970 16 23

[29] Magnus, Wilhelm, Karrass, Abraham, Solitar, Donald Combinatorial group theory 2004

[30] Mccullough, Darryl, Miller, Andy The genus 2 Torelli group is not finitely generated Topology Appl. 1986 43 49

[31] Mcshane, Greg, Rivin, Igor A norm on homology of surfaces and counting simple geodesics Internat. Math. Res. Notices 1995 61 69

[32] Mess, Geoffrey The Torelli groups for genus 2 and 3 surfaces Topology 1992 775 790

[33] Paris, Luis, Rolfsen, Dale Geometric subgroups of mapping class groups J. Reine Angew. Math. 2000 47 83

[34] Putman, Andrew Cutting and pasting in the Torelli group Geom. Topol. 2007 829 865

[35] Serre, Jean-Pierre Cohomologie des groupes discrets 1971 77 169

[36] Serre, Jean-Pierre Trees 1980

[37] Stallings, John R. On torsion-free groups with infinitely many ends Ann. of Math. (2) 1968 312 334

[38] Swan, Richard G. Groups of cohomological dimension one J. Algebra 1969 585 610

[39] Thurston, William P. A norm for the homology of 3-manifolds Mem. Amer. Math. Soc. 1986

[40] Vautaw, William R. Abelian subgroups of the Torelli group Algebr. Geom. Topol. 2002 157 170

Cité par Sources :