Positivity of the universal pairing in 3 dimensions
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 107-188

Voir la notice de l'article provenant de la source American Mathematical Society

Associated to a closed, oriented surface $S$ is the complex vector space with basis the set of all compact, oriented $3$-manifolds which it bounds. Gluing along $S$ defines a Hermitian pairing on this space with values in the complex vector space with basis all closed, oriented $3$-manifolds. The main result in this paper is that this pairing is positive, i.e. that the result of pairing a nonzero vector with itself is nonzero. This has bearing on the question of what kinds of topological information can be extracted in principle from unitary $(2+1)$-dimensional TQFTs. The proof involves the construction of a suitable complexity function $c$ on all closed $3$-manifolds, satisfying a gluing axiom which we call the topological Cauchy-Schwarz inequality, namely that $c(AB) \le \max (c(AA),c(BB))$ for all $A,B$ which bound $S$, with equality if and only if $A=B$. The complexity function $c$ involves input from many aspects of $3$-manifold topology, and in the process of establishing its key properties we obtain a number of results of independent interest. For example, we show that when two finite-volume hyperbolic $3$-manifolds are glued along an incompressible acylindrical surface, the resulting hyperbolic $3$-manifold has minimal volume only when the gluing can be done along a totally geodesic surface; this generalizes a similar theorem for closed hyperbolic $3$-manifolds due to Agol-Storm-Thurston.
DOI : 10.1090/S0894-0347-09-00642-0

Calegari, Danny 1 ; Freedman, Michael 2 ; Walker, Kevin 2

1 Department of Mathematics, Caltech, Pasadena, California 91125
2 Microsoft Station Q, University of California, Santa Barbara, California 93106
@article{10_1090_S0894_0347_09_00642_0,
     author = {Calegari, Danny and Freedman, Michael and Walker, Kevin},
     title = {Positivity of the universal pairing in 3 dimensions},
     journal = {Journal of the American Mathematical Society},
     pages = {107--188},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00642-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00642-0/}
}
TY  - JOUR
AU  - Calegari, Danny
AU  - Freedman, Michael
AU  - Walker, Kevin
TI  - Positivity of the universal pairing in 3 dimensions
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 107
EP  - 188
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00642-0/
DO  - 10.1090/S0894-0347-09-00642-0
ID  - 10_1090_S0894_0347_09_00642_0
ER  - 
%0 Journal Article
%A Calegari, Danny
%A Freedman, Michael
%A Walker, Kevin
%T Positivity of the universal pairing in 3 dimensions
%J Journal of the American Mathematical Society
%D 2010
%P 107-188
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00642-0/
%R 10.1090/S0894-0347-09-00642-0
%F 10_1090_S0894_0347_09_00642_0
Calegari, Danny; Freedman, Michael; Walker, Kevin. Positivity of the universal pairing in 3 dimensions. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 107-188. doi: 10.1090/S0894-0347-09-00642-0

[1] Agol, Ian, Storm, Peter A., Thurston, William P. Lower bounds on volumes of hyperbolic Haken 3-manifolds J. Amer. Math. Soc. 2007 1053 1077

[2] Atiyah, Michael The geometry and physics of knots 1990

[3] Blanchet, C., Habegger, N., Masbaum, G., Vogel, P. Topological quantum field theories derived from the Kauffman bracket Topology 1995 883 927

[4] Bonahon, F., Siebenmann, L. C. The characteristic toric splitting of irreducible compact 3-orbifolds Math. Ann. 1987 441 479

[5] Bray, Hubert L. Proof of the Riemannian Penrose inequality using the positive mass theorem J. Differential Geom. 2001 177 267

[6] Casson, A. J., Gordon, C. Mca. Reducing Heegaard splittings Topology Appl. 1987 275 283

[7] Chow, Bennett, Knopf, Dan The Ricci flow: an introduction 2004

[8] Colding, Tobias H., Minicozzi, William P., Ii Minimal surfaces 1999

[9] Deturck, Dennis M. Deforming metrics in the direction of their Ricci tensors J. Differential Geom. 1983 157 162

[10] Dijkgraaf, Robbert, Witten, Edward Topological gauge theories and group cohomology Comm. Math. Phys. 1990 393 429

[11] Frankel, Theodore Applications of Duschek’s formula to cosmology and minimal surfaces Bull. Amer. Math. Soc. 1975 579 582

[12] Freed, Daniel S. Higher algebraic structures and quantization Comm. Math. Phys. 1994 343 398

[13] Freed, Daniel S., Quinn, Frank Chern-Simons theory with finite gauge group Comm. Math. Phys. 1993 435 472

[14] Freedman, Michael, Hass, Joel, Scott, Peter Least area incompressible surfaces in 3-manifolds Invent. Math. 1983 609 642

[15] Freedman, Michael H., Kitaev, Alexei, Nayak, Chetan, Slingerland, Johannes K., Walker, Kevin, Wang, Zhenghan Universal manifold pairings and positivity Geom. Topol. 2005 2303 2317

[16] Gromov, Mikhael Groups of polynomial growth and expanding maps Inst. Hautes Études Sci. Publ. Math. 1981 53 73

[17] Hamilton, Richard S. The formation of singularities in the Ricci flow 1995 7 136

[18] Hamilton, Richard S. Non-singular solutions of the Ricci flow on three-manifolds Comm. Anal. Geom. 1999 695 729

[19] Hass, Joel, Scott, Peter The existence of least area surfaces in 3-manifolds Trans. Amer. Math. Soc. 1988 87 114

[20] Hempel, John 3-Manifolds 1976

[21] Hempel, John Residual finiteness for 3-manifolds 1987 379 396

[22] Jaco, William H., Shalen, Peter B. Seifert fibered spaces in 3-manifolds Mem. Amer. Math. Soc. 1979

[23] Johannson, Klaus Homotopy equivalences of 3-manifolds with boundaries 1979

[24] Kreck, Matthias, Teichner, Peter Positivity of topological field theories in dimension at least 5 J. Topol. 2008 663 670

[25] Lackenby, Marc Heegaard splittings, the virtually Haken conjecture and property (𝜏) Invent. Math. 2006 317 359

[26] Laudenbach, F. Sur les 2-sphères d’une variété de dimension 3 Ann. of Math. (2) 1973 57 81

[27] Lubotzky, Alexander Discrete groups, expanding graphs and invariant measures 1994

[28] Meeks, William, Iii, Simon, Leon, Yau, Shing Tung Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature Ann. of Math. (2) 1982 621 659

[29] Meeks, William H., Iii, Yau, Shing Tung The equivariant Dehn’s lemma and loop theorem Comment. Math. Helv. 1981 225 239

[30] Miao, Pengzi Positive mass theorem on manifolds admitting corners along a hypersurface Adv. Theor. Math. Phys. 2002

[31] Otal, Jean-Pierre Thurston’s hyperbolization of Haken manifolds 1998 77 194

[32] Penrouz, R., Penrouz, R. Struktura prostranstva-vremeni 1972 183

[33] Quinn, Frank Lectures on axiomatic topological quantum field theory 1995 323 453

[34] Raghunathan, M. S. Discrete subgroups of Lie groups 1972

[35] Reshetikhin, N., Turaev, V. G. Invariants of 3-manifolds via link polynomials and quantum groups Invent. Math. 1991 547 597

[36] Roberts, Justin Irreducibility of some quantum representations of mapping class groups J. Knot Theory Ramifications 2001 763 767

[37] Schoen, Richard Estimates for stable minimal surfaces in three-dimensional manifolds 1983 111 126

[38] Schultens, Jennifer Heegaard genus formula for Haken manifolds Geom. Dedicata 2006 49 68

[39] Scott, Peter The geometries of 3-manifolds Bull. London Math. Soc. 1983 401 487

[40] Simon, Miles Deformation of 𝐶⁰ Riemannian metrics in the direction of their Ricci curvature Comm. Anal. Geom. 2002 1033 1074

[41] Singer, James Three-dimensional manifolds and their Heegaard diagrams Trans. Amer. Math. Soc. 1933 88 111

[42] Waldhausen, Friedhelm Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II Invent. Math. 1967

Cité par Sources :