Constructing Weyl group multiple Dirichlet series
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 189-215

Voir la notice de l'article provenant de la source American Mathematical Society

Let $\Phi$ be a reduced root system of rank $r$. A Weyl group multiple Dirichlet series for $\Phi$ is a Dirichlet series in $r$ complex variables $s_1,\dots ,s_r$, initially converging for $\mathrm {Re}(s_i)$ sufficiently large, that has meromorphic continuation to ${\mathbb C}^r$ and satisfies functional equations under the transformations of ${\mathbb C}^r$ corresponding to the Weyl group of $\Phi$. A heuristic definition of such a series was given by Brubaker, Bump, Chinta, Friedberg, and Hoffstein, and they have been investigated in certain special cases by others. In this paper we generalize results by Chinta and Gunnells to construct Weyl group multiple Dirichlet series by a uniform method and show in all cases that they have the expected properties.
DOI : 10.1090/S0894-0347-09-00641-9

Chinta, Gautam 1 ; Gunnells, Paul 2

1 Department of Mathematics, The City College of CUNY, New York, New York 10031
2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003
@article{10_1090_S0894_0347_09_00641_9,
     author = {Chinta, Gautam and Gunnells, Paul},
     title = {Constructing {Weyl} group multiple {Dirichlet} series},
     journal = {Journal of the American Mathematical Society},
     pages = {189--215},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00641-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00641-9/}
}
TY  - JOUR
AU  - Chinta, Gautam
AU  - Gunnells, Paul
TI  - Constructing Weyl group multiple Dirichlet series
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 189
EP  - 215
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00641-9/
DO  - 10.1090/S0894-0347-09-00641-9
ID  - 10_1090_S0894_0347_09_00641_9
ER  - 
%0 Journal Article
%A Chinta, Gautam
%A Gunnells, Paul
%T Constructing Weyl group multiple Dirichlet series
%J Journal of the American Mathematical Society
%D 2010
%P 189-215
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00641-9/
%R 10.1090/S0894-0347-09-00641-9
%F 10_1090_S0894_0347_09_00641_9
Chinta, Gautam; Gunnells, Paul. Constructing Weyl group multiple Dirichlet series. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 189-215. doi: 10.1090/S0894-0347-09-00641-9

[1] Brubaker, Ben, Bump, Daniel On Kubota’s Dirichlet series J. Reine Angew. Math. 2006 159 184

[2] Brubaker, Benjamin, Bump, Daniel Residues of Weyl group multiple Dirichlet series associated to ̃𝐺𝐿_{𝑛+1} 2006 115 134

[3] Brubaker, Benjamin, Bump, Daniel, Chinta, Gautam, Friedberg, Solomon, Hoffstein, Jeffrey Weyl group multiple Dirichlet series. I 2006 91 114

[4] Brubaker, Ben, Bump, Daniel, Friedberg, Solomon Weyl group multiple Dirichlet series. II. The stable case Invent. Math. 2006 325 355

[5] Brubaker, Ben, Bump, Daniel, Friedberg, Solomon Twisted Weyl group multiple Dirichlet series: the stable case 2008 1 26

[6] Brubaker, B., Bump, D., Friedberg, S., Hoffstein, J. Weyl group multiple Dirichlet series. III. Eisenstein series and twisted unstable 𝐴ᵣ Ann. of Math. (2) 2007 293 316

[7] Bump, Daniel, Friedberg, Solomon, Hoffstein, Jeffrey 𝑝-adic Whittaker functions on the metaplectic group Duke Math. J. 1991 379 397

[8] Chinta, Gautam, Friedberg, Solomon, Gunnells, Paul E. On the 𝑝-parts of quadratic Weyl group multiple Dirichlet series J. Reine Angew. Math. 2008 1 23

[9] Chinta, Gautam, Friedberg, Solomon, Hoffstein, Jeffrey Multiple Dirichlet series and automorphic forms 2006 3 41

[10] Chinta, Gautam, Gunnells, Paul E. Weyl group multiple Dirichlet series constructed from quadratic characters Invent. Math. 2007 327 353

[11] Chinta, Gautam Mean values of biquadratic zeta functions Invent. Math. 2005 145 163

[12] Chinta, Gautam Multiple Dirichlet series over rational function fields Acta Arith. 2008 377 391

[13] Diaconu, Adrian, Goldfeld, Dorian, Hoffstein, Jeffrey Multiple Dirichlet series and moments of zeta and 𝐿-functions Compositio Math. 2003 297 360

[14] Fisher, Benji, Friedberg, Solomon Sums of twisted 𝐺𝐿(2) 𝐿-functions over function fields Duke Math. J. 2003 543 570

[15] Fisher, Benji, Friedberg, Solomon Double Dirichlet series over function fields Compos. Math. 2004 613 630

[16] Friedberg, Solomon, Hoffstein, Jeffrey, Lieman, Daniel Double Dirichlet series and the 𝑛-th order twists of Hecke 𝐿-series Math. Ann. 2003 315 338

[17] Goldfeld, Dorian, Hoffstein, Jeffrey Eisenstein series of 1\over2-integral weight and the mean value of real Dirichlet 𝐿-series Invent. Math. 1985 185 208

[18] Hoffstein, Jeffrey Theta functions on the 𝑛-fold metaplectic cover of 𝑆𝐿(2)—the function field case Invent. Math. 1992 61 86

[19] Humphreys, James E. Reflection groups and Coxeter groups 1990

[20] Ireland, Kenneth, Rosen, Michael A classical introduction to modern number theory 1990

[21] Kazhdan, D. A., Patterson, S. J. Metaplectic forms Inst. Hautes Études Sci. Publ. Math. 1984 35 142

[22] Kubota, Tomio Some number-theoretical results on real analytic automorphic forms 1971 87 96

[23] Kubota, Tomio Some results concerning reciprocity law and real analytic automorphic functions 1971 382 395

[24] Neukirch, Jã¼Rgen Algebraic number theory 1999

[25] Patterson, S. J. A cubic analogue of the theta series J. Reine Angew. Math. 1977 125 161

[26] Patterson, S. J. A cubic analogue of the theta series. II J. Reine Angew. Math. 1977 217 220

[27] Patterson, S. J. Note on a paper of J. Hoffstein Glasg. Math. J. 2007 243 255

Cité par Sources :