Schubert calculus and representations of the general linear group
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 909-940

Voir la notice de l'article provenant de la source American Mathematical Society

We construct a canonical isomorphism between the Bethe algebra acting on a multiplicity space of a tensor product of evaluation $\mathfrak {gl}_N[t]$-modules and the scheme-theoretic intersection of suitable Schubert varieties. Moreover, we prove that the multiplicity space as a module over the Bethe algebra is isomorphic to the coregular representation of the scheme-theoretic intersection. In particular, this result implies the simplicity of the spectrum of the Bethe algebra for real values of evaluation parameters and the transversality of the intersection of the corresponding Schubert varieties.
DOI : 10.1090/S0894-0347-09-00640-7

Mukhin, E. 1 ; Tarasov, V. 2 ; Varchenko, A. 3

1 Department of Mathematical Sciences, Indiana University, Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202-3216
2 St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Peters- burg, 191023, Russia
3 Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250
@article{10_1090_S0894_0347_09_00640_7,
     author = {Mukhin, E. and Tarasov, V. and Varchenko, A.},
     title = {Schubert calculus and representations of the general linear group},
     journal = {Journal of the American Mathematical Society},
     pages = {909--940},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00640-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00640-7/}
}
TY  - JOUR
AU  - Mukhin, E.
AU  - Tarasov, V.
AU  - Varchenko, A.
TI  - Schubert calculus and representations of the general linear group
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 909
EP  - 940
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00640-7/
DO  - 10.1090/S0894-0347-09-00640-7
ID  - 10_1090_S0894_0347_09_00640_7
ER  - 
%0 Journal Article
%A Mukhin, E.
%A Tarasov, V.
%A Varchenko, A.
%T Schubert calculus and representations of the general linear group
%J Journal of the American Mathematical Society
%D 2009
%P 909-940
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00640-7/
%R 10.1090/S0894-0347-09-00640-7
%F 10_1090_S0894_0347_09_00640_7
Mukhin, E.; Tarasov, V.; Varchenko, A. Schubert calculus and representations of the general linear group. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 909-940. doi: 10.1090/S0894-0347-09-00640-7

[1] Belkale, Prakash Invariant theory of 𝐺𝐿(𝑛) and intersection theory of Grassmannians Int. Math. Res. Not. 2004 3709 3721

[2] Chari, Vyjayanthi, Greenstein, Jacob Current algebras, highest weight categories and quivers Adv. Math. 2007 811 840

[3] Chari, Vyjayanthi, Loktev, Sergei Weyl, Demazure and fusion modules for the current algebra of 𝔰𝔩ᵣ₊₁ Adv. Math. 2006 928 960

[4] Chari, Vyjayanthi, Pressley, Andrew Weyl modules for classical and quantum affine algebras Represent. Theory 2001 191 223

[5] Eremenko, A., Gabrielov, A. Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry Ann. of Math. (2) 2002 105 129

[6] Eisenbud, David, Harris, Joe Limit linear series: basic theory Invent. Math. 1986 337 371

[7] Frenkel, Edward Affine algebras, Langlands duality and Bethe ansatz 1995 606 642

[8] Fulton, William Intersection theory 1984

[9] Gaudin, Michel La fonction d’onde de Bethe 1983

[10] Griffiths, Phillip, Harris, Joseph Principles of algebraic geometry 1994

[11] Hodge, W. V. D., Pedoe, D. Methods of algebraic geometry. Vol. II. Book III: General theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties 1952

[12] Howe, Roger, Umeda, T\B{O}Ru The Capelli identity, the double commutant theorem, and multiplicity-free actions Math. Ann. 1991 565 619

[13] Kedem, Rinat Fusion products of 𝔰𝔩_{𝔑} symmetric power representations and Kostka polynomials 2004 88 93

[14] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[15] Molev, A., Nazarov, M., Ol′Shanskiä­, G. Yangians and classical Lie algebras Uspekhi Mat. Nauk 1996 27 104

[16] Mukhin, E., Tarasov, V., Varchenko, A. Bethe eigenvectors of higher transfer matrices J. Stat. Mech. Theory Exp. 2006

[17] Mukhin, E., Varchenko, A. Critical points of master functions and flag varieties Commun. Contemp. Math. 2004 111 163

[18] Mukhin, Evgeny, Varchenko, Alexander Norm of a Bethe vector and the Hessian of the master function Compos. Math. 2005 1012 1028

[19] Mukhin, E., Varchenko, A. Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe ansatz conjecture Trans. Amer. Math. Soc. 2007 5383 5418

[20] Sottile, Frank Rational curves on Grassmannians: systems theory, reality, and transversality 2001 9 42

[21] Tamvakis, Harry The connection between representation theory and Schubert calculus Enseign. Math. (2) 2004 267 286

Cité par Sources :