Voir la notice de l'article provenant de la source American Mathematical Society
Gabai, David 1 ; Meyerhoff, Robert 2 ; Milley, Peter 3
@article{10_1090_S0894_0347_09_00639_0,
     author = {Gabai, David and Meyerhoff, Robert and Milley, Peter},
     title = {Minimum volume cusped hyperbolic three-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1157--1215},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00639-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00639-0/}
}
                      
                      
                    TY - JOUR AU - Gabai, David AU - Meyerhoff, Robert AU - Milley, Peter TI - Minimum volume cusped hyperbolic three-manifolds JO - Journal of the American Mathematical Society PY - 2009 SP - 1157 EP - 1215 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00639-0/ DO - 10.1090/S0894-0347-09-00639-0 ID - 10_1090_S0894_0347_09_00639_0 ER -
%0 Journal Article %A Gabai, David %A Meyerhoff, Robert %A Milley, Peter %T Minimum volume cusped hyperbolic three-manifolds %J Journal of the American Mathematical Society %D 2009 %P 1157-1215 %V 22 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00639-0/ %R 10.1090/S0894-0347-09-00639-0 %F 10_1090_S0894_0347_09_00639_0
Gabai, David; Meyerhoff, Robert; Milley, Peter. Minimum volume cusped hyperbolic three-manifolds. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1157-1215. doi: 10.1090/S0894-0347-09-00639-0
[1] The noncompact hyperbolic 3-manifold of minimal volume Proc. Amer. Math. Soc. 1987 601 606
[2] , , Dehn surgery, homology and hyperbolic volume Algebr. Geom. Topol. 2006 2297 2312
[3] Volume change under drilling Geom. Topol. 2002 905 916
[4] , , Lower bounds on volumes of hyperbolic Haken 3-manifolds J. Amer. Math. Soc. 2007 1053 1077
[5] , , Hyperbolic structures on Dehn filling of some punctured-torus bundles over ð¹ Kobe J. Math. 1987 117 147
[6] , The orientable cusped hyperbolic 3-manifolds of minimum volume Invent. Math. 2001 451 478
[7] Elementary geometry in hyperbolic space 1989
[8] , , Dehn filling, volume, and the Jones polynomial J. Differential Geom. 2008 429 464
[9] , , Volumes of tubes in hyperbolic 3-manifolds J. Differential Geom. 2001 23 46
[10] , , Homotopy hyperbolic 3-manifolds are hyperbolic Ann. of Math. (2) 2003 335 431
[11] , Dehn filling of the âmagicâ 3-manifold Comm. Anal. Geom. 2006 969 1026
[12] , Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds Uspekhi Mat. Nauk 1988
[13] Proving a manifold to be hyperbolic once it has been approximated to be so Algebr. Geom. Topol. 2009 103 133
[14] A universal upper bound on density of tube packings in hyperbolic space J. Differential Geom. 2006 113 127
[15] Three-dimensional geometry and topology. Vol. 1 1997
Cité par Sources :