Minimum volume cusped hyperbolic three-manifolds
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1157-1215

Voir la notice de l'article provenant de la source American Mathematical Society

This paper is the second in a series whose goal is to understand the structure of low-volume complete orientable hyperbolic $3$-manifolds. Using Mom technology, we prove that any one-cusped hyperbolic $3$-manifold with volume $\le 2.848$ can be obtained by a Dehn filling on one of $21$ cusped hyperbolic $3$-manifolds. We also show how this result can be used to construct a complete list of all one-cusped hyperbolic $3$-manifolds with volume $\le 2.848$ and all closed hyperbolic $3$-manifolds with volume $\le 0.943$. In particular, the Weeks manifold is the unique smallest volume closed orientable hyperbolic $3$-manifold.
DOI : 10.1090/S0894-0347-09-00639-0

Gabai, David 1 ; Meyerhoff, Robert 2 ; Milley, Peter 3

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
2 Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
3 Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
@article{10_1090_S0894_0347_09_00639_0,
     author = {Gabai, David and Meyerhoff, Robert and Milley, Peter},
     title = {Minimum volume cusped hyperbolic three-manifolds},
     journal = {Journal of the American Mathematical Society},
     pages = {1157--1215},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00639-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00639-0/}
}
TY  - JOUR
AU  - Gabai, David
AU  - Meyerhoff, Robert
AU  - Milley, Peter
TI  - Minimum volume cusped hyperbolic three-manifolds
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 1157
EP  - 1215
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00639-0/
DO  - 10.1090/S0894-0347-09-00639-0
ID  - 10_1090_S0894_0347_09_00639_0
ER  - 
%0 Journal Article
%A Gabai, David
%A Meyerhoff, Robert
%A Milley, Peter
%T Minimum volume cusped hyperbolic three-manifolds
%J Journal of the American Mathematical Society
%D 2009
%P 1157-1215
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00639-0/
%R 10.1090/S0894-0347-09-00639-0
%F 10_1090_S0894_0347_09_00639_0
Gabai, David; Meyerhoff, Robert; Milley, Peter. Minimum volume cusped hyperbolic three-manifolds. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1157-1215. doi: 10.1090/S0894-0347-09-00639-0

[1] Adams, Colin C. The noncompact hyperbolic 3-manifold of minimal volume Proc. Amer. Math. Soc. 1987 601 606

[2] Agol, Ian, Culler, Marc, Shalen, Peter B. Dehn surgery, homology and hyperbolic volume Algebr. Geom. Topol. 2006 2297 2312

[3] Agol, Ian Volume change under drilling Geom. Topol. 2002 905 916

[4] Agol, Ian, Storm, Peter A., Thurston, William P. Lower bounds on volumes of hyperbolic Haken 3-manifolds J. Amer. Math. Soc. 2007 1053 1077

[5] Betley, S., Przytycki, J. H., ŻUkowski, T. Hyperbolic structures on Dehn filling of some punctured-torus bundles over 𝑆¹ Kobe J. Math. 1987 117 147

[6] Cao, Chun, Meyerhoff, G. Robert The orientable cusped hyperbolic 3-manifolds of minimum volume Invent. Math. 2001 451 478

[7] Fenchel, Werner Elementary geometry in hyperbolic space 1989

[8] Futer, David, Kalfagianni, Efstratia, Purcell, Jessica S. Dehn filling, volume, and the Jones polynomial J. Differential Geom. 2008 429 464

[9] Gabai, David, Meyerhoff, G. Robert, Milley, Peter Volumes of tubes in hyperbolic 3-manifolds J. Differential Geom. 2001 23 46

[10] Gabai, David, Meyerhoff, G. Robert, Thurston, Nathaniel Homotopy hyperbolic 3-manifolds are hyperbolic Ann. of Math. (2) 2003 335 431

[11] Martelli, Bruno, Petronio, Carlo Dehn filling of the “magic” 3-manifold Comm. Anal. Geom. 2006 969 1026

[12] Matveev, S. V., Fomenko, A. T. Isoenergetic surfaces of Hamiltonian systems, the enumeration of three-dimensional manifolds in order of growth of their complexity, and the calculation of the volumes of closed hyperbolic manifolds Uspekhi Mat. Nauk 1988

[13] Moser, Harriet Proving a manifold to be hyperbolic once it has been approximated to be so Algebr. Geom. Topol. 2009 103 133

[14] Przeworski, Andrew A universal upper bound on density of tube packings in hyperbolic space J. Differential Geom. 2006 113 127

[15] Thurston, William P. Three-dimensional geometry and topology. Vol. 1 1997

Cité par Sources :