Measure conjugacy invariants for actions of countable sofic groups
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 217-245

Voir la notice de l'article provenant de la source American Mathematical Society

Sofic groups were defined implicitly by Gromov and explicitly by Weiss. All residually finite groups (and hence all linear groups) are sofic. The purpose of this paper is to introduce, for every countable sofic group $G$, a family of measure-conjugacy invariants for measure-preserving $G$-actions on probability spaces. These invariants generalize Kolmogorov-Sinai entropy for actions of amenable groups. They are computed exactly for Bernoulli shifts over $G$, leading to a complete classification of Bernoulli systems up to measure-conjugacy for many groups, including all countable linear groups. Recent rigidity results of Y. Kida and S. Popa are utilized to classify Bernoulli shifts over mapping class groups and property (T) groups up to orbit equivalence and von Neumann equivalence, respectively.
DOI : 10.1090/S0894-0347-09-00637-7

Bowen, Lewis 1

1 Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Keller 409, Honolulu, HI 96822
@article{10_1090_S0894_0347_09_00637_7,
     author = {Bowen, Lewis},
     title = {Measure conjugacy invariants for actions of countable sofic groups},
     journal = {Journal of the American Mathematical Society},
     pages = {217--245},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00637-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00637-7/}
}
TY  - JOUR
AU  - Bowen, Lewis
TI  - Measure conjugacy invariants for actions of countable sofic groups
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 217
EP  - 245
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00637-7/
DO  - 10.1090/S0894-0347-09-00637-7
ID  - 10_1090_S0894_0347_09_00637_7
ER  - 
%0 Journal Article
%A Bowen, Lewis
%T Measure conjugacy invariants for actions of countable sofic groups
%J Journal of the American Mathematical Society
%D 2010
%P 217-245
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00637-7/
%R 10.1090/S0894-0347-09-00637-7
%F 10_1090_S0894_0347_09_00637_7
Bowen, Lewis. Measure conjugacy invariants for actions of countable sofic groups. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 217-245. doi: 10.1090/S0894-0347-09-00637-7

[1] Bowen, Lewis Periodicity and circle packings of the hyperbolic plane Geom. Dedicata 2003 213 236

[2] Connes, A., Feldman, J., Weiss, B. An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981

[3] Connes, Alain Sur la classification des facteurs de type 𝐼𝐼 C. R. Acad. Sci. Paris Sér. A-B 1975

[4] Connes, A. Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸ Ann. of Math. (2) 1976 73 115

[5] De La Harpe, Pierre, Valette, Alain La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158

[6] Dye, H. A. On groups of measure preserving transformations. I Amer. J. Math. 1959 119 159

[7] Dye, H. A. On groups of measure preserving transformations. II Amer. J. Math. 1963 551 576

[8] Elek, Gã¡Bor, Szabã³, Endre Hyperlinearity, essentially free actions and 𝐿²-invariants. The sofic property Math. Ann. 2005 421 441

[9] Elek, Gã¡Bor, Szabã³, Endre On sofic groups J. Group Theory 2006 161 171

[10] Glasner, Eli Ergodic theory via joinings 2003

[11] Grossman, Edna K. On the residual finiteness of certain mapping class groups J. London Math. Soc. (2) 1974/75 160 164

[12] Gromov, M. Endomorphisms of symbolic algebraic varieties J. Eur. Math. Soc. (JEMS) 1999 109 197

[13] Ivanov, N. V. Algebraic properties of mapping class groups of surfaces 1986 15 35

[14] Jones, Vaughan F. R. von Neumann algebras in mathematics and physics 1991 121 138

[15] Kida, Yoshikata Orbit equivalence rigidity for ergodic actions of the mapping class group Geom. Dedicata 2008 99 109

[16] Kieffer, J. C. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space Ann. Probability 1975 1031 1037

[17] Kolmogorov, A. N. A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces Dokl. Akad. Nauk SSSR (N.S.) 1958 861 864

[18] Kolmogorov, A. N. Entropy per unit time as a metric invariant of automorphisms Dokl. Akad. Nauk SSSR 1959 754 755

[19] Malcev, A. On isomorphic matrix representations of infinite groups Rec. Math. [Mat. Sbornik] N.S. 1940 405 422

[20] Margulis, G. A. Finitely-additive invariant measures on Euclidean spaces Ergodic Theory Dynam. Systems 1982

[21] Mcduff, Dusa A countable infinity of Π₁ factors Ann. of Math. (2) 1969 361 371

[22] Murray, F. J., Von Neumann, J. On rings of operators Ann. of Math. (2) 1936 116 229

[23] Murray, F. J., Von Neumann, J. On rings of operators. IV Ann. of Math. (2) 1943 716 808

[24] Ol′Shanskiä­, A. Yu. Geometry of defining relations in groups 1991

[25] Ornstein, Donald Bernoulli shifts with the same entropy are isomorphic Advances in Math. 1970 337 352

[26] Ornstein, Donald Two Bernoulli shifts with infinite entropy are isomorphic Advances in Math. 1970

[27] Ornstein, Donald S., Weiss, Benjamin Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164

[28] Ornstein, Donald S., Weiss, Benjamin Entropy and isomorphism theorems for actions of amenable groups J. Analyse Math. 1987 1 141

[29] Parry, William Entropy and generators in ergodic theory 1969

[30] Pestov, Vladimir G. Hyperlinear and sofic groups: a brief guide Bull. Symbolic Logic 2008 449 480

[31] Popa, Sorin Strong rigidity of 𝐼𝐼₁ factors arising from malleable actions of 𝑤-rigid groups. II Invent. Math. 2006 409 451

[32] Popa, Sorin Deformation and rigidity for group actions and von Neumann algebras 2007 445 477

[33] Popa, Sorin On the superrigidity of malleable actions with spectral gap J. Amer. Math. Soc. 2008 981 1000

[34] Schwartz, J. Two finite, non-hyperfinite, non-isomorphic factors Comm. Pure Appl. Math. 1963 19 26

[35] Singer, I. M. Automorphisms of finite factors Amer. J. Math. 1955 117 133

[36] Sinaä­, Ja. On the concept of entropy for a dynamic system Dokl. Akad. Nauk SSSR 1959 768 771

[37] Stepin, A. M. Bernoulli shifts on groups Dokl. Akad. Nauk SSSR 1975 300 302

[38] Tits, J. Free subgroups in linear groups J. Algebra 1972 250 270

[39] Weiss, Benjamin Sofic groups and dynamical systems Sankhyā Ser. A 2000 350 359

Cité par Sources :