Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_09_00637_7,
     author = {Bowen, Lewis},
     title = {Measure conjugacy invariants for actions of countable sofic groups},
     journal = {Journal of the American Mathematical Society},
     pages = {217--245},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00637-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00637-7/}
}
                      
                      
                    TY - JOUR AU - Bowen, Lewis TI - Measure conjugacy invariants for actions of countable sofic groups JO - Journal of the American Mathematical Society PY - 2010 SP - 217 EP - 245 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00637-7/ DO - 10.1090/S0894-0347-09-00637-7 ID - 10_1090_S0894_0347_09_00637_7 ER -
%0 Journal Article %A Bowen, Lewis %T Measure conjugacy invariants for actions of countable sofic groups %J Journal of the American Mathematical Society %D 2010 %P 217-245 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00637-7/ %R 10.1090/S0894-0347-09-00637-7 %F 10_1090_S0894_0347_09_00637_7
Bowen, Lewis. Measure conjugacy invariants for actions of countable sofic groups. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 217-245. doi: 10.1090/S0894-0347-09-00637-7
[1] Periodicity and circle packings of the hyperbolic plane Geom. Dedicata 2003 213 236
[2] , , An amenable equivalence relation is generated by a single transformation Ergodic Theory Dynam. Systems 1981
[3] Sur la classification des facteurs de type ð¼ð¼ C. R. Acad. Sci. Paris Sér. A-B 1975
[4] Classification of injective factors. Cases ð¼ð¼â, ð¼ð¼_{â}, ð¼ð¼ð¼_{ð}, ð̸ Ann. of Math. (2) 1976 73 115
[5] , La propriété (ð) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158
[6] On groups of measure preserving transformations. I Amer. J. Math. 1959 119 159
[7] On groups of measure preserving transformations. II Amer. J. Math. 1963 551 576
[8] , Hyperlinearity, essentially free actions and ð¿Â²-invariants. The sofic property Math. Ann. 2005 421 441
[9] , On sofic groups J. Group Theory 2006 161 171
[10] Ergodic theory via joinings 2003
[11] On the residual finiteness of certain mapping class groups J. London Math. Soc. (2) 1974/75 160 164
[12] Endomorphisms of symbolic algebraic varieties J. Eur. Math. Soc. (JEMS) 1999 109 197
[13] Algebraic properties of mapping class groups of surfaces 1986 15 35
[14] von Neumann algebras in mathematics and physics 1991 121 138
[15] Orbit equivalence rigidity for ergodic actions of the mapping class group Geom. Dedicata 2008 99 109
[16] A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space Ann. Probability 1975 1031 1037
[17] A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces Dokl. Akad. Nauk SSSR (N.S.) 1958 861 864
[18] Entropy per unit time as a metric invariant of automorphisms Dokl. Akad. Nauk SSSR 1959 754 755
[19] On isomorphic matrix representations of infinite groups Rec. Math. [Mat. Sbornik] N.S. 1940 405 422
[20] Finitely-additive invariant measures on Euclidean spaces Ergodic Theory Dynam. Systems 1982
[21] A countable infinity of Î â factors Ann. of Math. (2) 1969 361 371
[22] , On rings of operators Ann. of Math. (2) 1936 116 229
[23] , On rings of operators. IV Ann. of Math. (2) 1943 716 808
[24] Geometry of defining relations in groups 1991
[25] Bernoulli shifts with the same entropy are isomorphic Advances in Math. 1970 337 352
[26] Two Bernoulli shifts with infinite entropy are isomorphic Advances in Math. 1970
[27] , Ergodic theory of amenable group actions. I. The Rohlin lemma Bull. Amer. Math. Soc. (N.S.) 1980 161 164
[28] , Entropy and isomorphism theorems for actions of amenable groups J. Analyse Math. 1987 1 141
[29] Entropy and generators in ergodic theory 1969
[30] Hyperlinear and sofic groups: a brief guide Bull. Symbolic Logic 2008 449 480
[31] Strong rigidity of ð¼ð¼â factors arising from malleable actions of ð¤-rigid groups. II Invent. Math. 2006 409 451
[32] Deformation and rigidity for group actions and von Neumann algebras 2007 445 477
[33] On the superrigidity of malleable actions with spectral gap J. Amer. Math. Soc. 2008 981 1000
[34] Two finite, non-hyperfinite, non-isomorphic factors Comm. Pure Appl. Math. 1963 19 26
[35] Automorphisms of finite factors Amer. J. Math. 1955 117 133
[36] On the concept of entropy for a dynamic system Dokl. Akad. Nauk SSSR 1959 768 771
[37] Bernoulli shifts on groups Dokl. Akad. Nauk SSSR 1975 300 302
[38] Free subgroups in linear groups J. Algebra 1972 250 270
[39] Sofic groups and dynamical systems SankhyÄ Ser. A 2000 350 359
Cité par Sources :