SLE and the free field: Partition functions and couplings
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 995-1054

Voir la notice de l'article provenant de la source American Mathematical Society

Schramm-Loewner Evolutions (SLE) are random curves in planar simply connected domains; the massless (Euclidean) free field in such a domain is a random distribution. Both have conformal invariance properties in law. In the present article, some relations between the two objects are studied. We establish identities of partition functions between different versions of SLE and the free field with appropriate boundary conditions; this involves $\zeta$-regularization and the Polyakov-Alvarez conformal anomaly formula. We proceed with a construction of couplings of SLE with the free field, showing that, in a precise sense, chordal SLE is the solution of a stochastic “differential” equation driven by the free field. Existence, uniqueness in law, and pathwise uniqueness for these SDEs are proved for general $\kappa >0$. This identifies SLE curves as local observables of the free field.
DOI : 10.1090/S0894-0347-09-00636-5

Dubédat, Julien 1

1 Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027
@article{10_1090_S0894_0347_09_00636_5,
     author = {Dub\~A{\textcopyright}dat, Julien},
     title = {SLE and the free field: {Partition} functions and couplings},
     journal = {Journal of the American Mathematical Society},
     pages = {995--1054},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00636-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00636-5/}
}
TY  - JOUR
AU  - Dubédat, Julien
TI  - SLE and the free field: Partition functions and couplings
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 995
EP  - 1054
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00636-5/
DO  - 10.1090/S0894-0347-09-00636-5
ID  - 10_1090_S0894_0347_09_00636_5
ER  - 
%0 Journal Article
%A Dubédat, Julien
%T SLE and the free field: Partition functions and couplings
%J Journal of the American Mathematical Society
%D 2009
%P 995-1054
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00636-5/
%R 10.1090/S0894-0347-09-00636-5
%F 10_1090_S0894_0347_09_00636_5
Dubédat, Julien. SLE and the free field: Partition functions and couplings. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 995-1054. doi: 10.1090/S0894-0347-09-00636-5

[1] Alvarez, Orlando Theory of strings with boundaries: fluctuations, topology and quantum geometry Nuclear Phys. B 1983 125 184

[2] Bauer, Michel, Bernard, Denis 2D growth processes: SLE and Loewner chains Phys. Rep. 2006 115 221

[3] Beffara, Vincent Hausdorff dimensions for 𝑆𝐿𝐸₆ Ann. Probab. 2004 2606 2629

[4] Camia, Federico, Newman, Charles M. Two-dimensional critical percolation: the full scaling limit Comm. Math. Phys. 2006 1 38

[5] Da Prato, Giuseppe, Zabczyk, Jerzy Second order partial differential equations in Hilbert spaces 2002

[6] Dubã©Dat, Julien 𝑆𝐿𝐸(𝜅,𝜌) martingales and duality Ann. Probab. 2005 223 243

[7] Dubã©Dat, Julien Euler integrals for commuting SLEs J. Stat. Phys. 2006 1183 1218

[8] Dubã©Dat, Julien Excursion decompositions for SLE and Watts’ crossing formula Probab. Theory Related Fields 2006 453 488

[9] Dubã©Dat, Julien Commutation relations for Schramm-Loewner evolutions Comm. Pure Appl. Math. 2007 1792 1847

[10] Friedrich, R., Kalkkinen, J. On conformal field theory and stochastic Loewner evolution Nuclear Phys. B 2004 279 302

[11] Gawè©Dzki, Krzysztof Lectures on conformal field theory 1999 727 805

[12] Glimm, James, Jaffe, Arthur Quantum physics 1987

[13] Janson, Svante Gaussian Hilbert spaces 1997

[14] Kenyon, Richard Conformal invariance of domino tiling Ann. Probab. 2000 759 795

[15] Kenyon, Richard Dominos and the Gaussian free field Ann. Probab. 2001 1128 1137

[16] Kenyon, Richard W., Propp, James G., Wilson, David B. Trees and matchings Electron. J. Combin. 2000

[17] Kontsevich, M., Suhov, Y. On Malliavin measures, SLE, and CFT Tr. Mat. Inst. Steklova 2007 107 153

[18] Lawler, Gregory, Schramm, Oded, Werner, Wendelin Conformal restriction: the chordal case J. Amer. Math. Soc. 2003 917 955

[19] Lawler, Gregory F. Conformally invariant processes in the plane 2005

[20] Lawler, Gregory F., Schramm, Oded, Werner, Wendelin Conformal invariance of planar loop-erased random walks and uniform spanning trees Ann. Probab. 2004 939 995

[21] Lawler, Gregory F., Trujillo Ferreras, Josã© A. Random walk loop soup Trans. Amer. Math. Soc. 2007 767 787

[22] Lawler, Gregory F., Werner, Wendelin The Brownian loop soup Probab. Theory Related Fields 2004 565 588

[23] Osgood, B., Phillips, R., Sarnak, P. Extremals of determinants of Laplacians J. Funct. Anal. 1988 148 211

[24] Polyakov, A. M. Quantum geometry of bosonic strings Phys. Lett. B 1981 207 210

[25] Revuz, Daniel, Yor, Marc Continuous martingales and Brownian motion 1999

[26] Rohde, Steffen, Schramm, Oded Basic properties of SLE Ann. of Math. (2) 2005 883 924

[27] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees Israel J. Math. 2000 221 288

[28] Sheffield, Scott Gaussian free fields for mathematicians Probab. Theory Related Fields 2007 521 541

[29] Simon, Barry The 𝑃(𝜙)₂ Euclidean (quantum) field theory 1974

[30] Simon, Barry Trace ideals and their applications 2005

[31] Sonoda, Hidenori Functional determinants on punctured Riemann surfaces and their application to string theory Nuclear Phys. B 1987 157 192

[32] Werner, Wendelin Random planar curves and Schramm-Loewner evolutions 2004 107 195

[33] Zhan, Dapeng Duality of chordal SLE Invent. Math. 2008 309 353

[34] Zhan, Dapeng Reversibility of chordal SLE Ann. Probab. 2008 1472 1494

Cité par Sources :