Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1099-1156

Voir la notice de l'article provenant de la source American Mathematical Society

Consider a system of $N$ bosons in three dimensions interacting via a repulsive short range pair potential $N^2V(N(x_i-x_j))$, where $\mathbf {x}=(x_1, \ldots , x_N)$ denotes the positions of the particles. Let $H_N$ denote the Hamiltonian of the system and let $\psi _{N,t}$ be the solution to the Schrödinger equation. Suppose that the initial data $\psi _{N,0}$ satisfies the energy condition \[ \langle \psi _{N,0}, H_N \psi _{N,0} \rangle \leq C N \] and that the one-particle density matrix converges to a projection as $N \to \infty$. Then, we prove that the $k$-particle density matrices of $\psi _{N,t}$ factorize in the limit $N \to \infty$. Moreover, the one particle orbital wave function solves the time-dependent Gross-Pitaevskii equation, a cubic nonlinear Schrödinger equation with the coupling constant proportional to the scattering length of the potential $V$. In a recent paper, we proved the same statement under the condition that the interaction potential $V$ is sufficiently small. In the present work we develop a new approach that requires no restriction on the size of the potential.
DOI : 10.1090/S0894-0347-09-00635-3

Erdős, László 1 ; Schlein, Benjamin 2 ; Yau, Horng-Tzer 3

1 Institute of Mathematics, University of Munich, Theresienstrasse 39, D-80333 Munich, Germany
2 DPMMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
3 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
@article{10_1090_S0894_0347_09_00635_3,
     author = {Erd\r{A}‘s, L\~A{\textexclamdown}szl\~A{\textthreesuperior} and Schlein, Benjamin and Yau, Horng-Tzer},
     title = {Rigorous derivation of the {Gross-Pitaevskii} equation with a large interaction potential},
     journal = {Journal of the American Mathematical Society},
     pages = {1099--1156},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00635-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00635-3/}
}
TY  - JOUR
AU  - Erdős, László
AU  - Schlein, Benjamin
AU  - Yau, Horng-Tzer
TI  - Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 1099
EP  - 1156
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00635-3/
DO  - 10.1090/S0894-0347-09-00635-3
ID  - 10_1090_S0894_0347_09_00635_3
ER  - 
%0 Journal Article
%A Erdős, László
%A Schlein, Benjamin
%A Yau, Horng-Tzer
%T Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential
%J Journal of the American Mathematical Society
%D 2009
%P 1099-1156
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00635-3/
%R 10.1090/S0894-0347-09-00635-3
%F 10_1090_S0894_0347_09_00635_3
Erdős, László; Schlein, Benjamin; Yau, Horng-Tzer. Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1099-1156. doi: 10.1090/S0894-0347-09-00635-3

[1] Adami, Riccardo, Bardos, Claude, Golse, Franã§Ois, Teta, Alessandro Towards a rigorous derivation of the cubic NLSE in dimension one Asymptot. Anal. 2004 93 108

[2] Adami, Riccardo, Golse, Franã§Ois, Teta, Alessandro Rigorous derivation of the cubic NLS in dimension one J. Stat. Phys. 2007 1193 1220

[3] Bardos, Claude, Golse, Franã§Ois, Mauser, Norbert J. Weak coupling limit of the 𝑁-particle Schrödinger equation Methods Appl. Anal. 2000 275 293

[4] Bourgain, J. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case J. Amer. Math. Soc. 1999 145 171

[5] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T. Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in ℝ³ Ann. of Math. (2) 2008 767 865

[6] Elgart, Alexander, Erdå‘S, Lã¡Szlã³, Schlein, Benjamin, Yau, Horng-Tzer Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons Arch. Ration. Mech. Anal. 2006 265 283

[7] Elgart, Alexander, Schlein, Benjamin Mean field dynamics of boson stars Comm. Pure Appl. Math. 2007 500 545

[8] Erdå‘S, Lã¡Szlã³, Schlein, Benjamin, Yau, Horng-Tzer Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate Comm. Pure Appl. Math. 2006 1659 1741

[9] Erdå‘S, Lã¡Szlã³, Schlein, Benjamin, Yau, Horng-Tzer Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems Invent. Math. 2007 515 614

[10] Erdå‘S, Lã¡Szlã³, Yau, Horng-Tzer Derivation of the nonlinear Schrödinger equation from a many body Coulomb system Adv. Theor. Math. Phys. 2001 1169 1205

[11] Ginibre, J., Velo, G. The classical field limit of scattering theory for nonrelativistic many-boson systems. I Comm. Math. Phys. 1979 37 76

[12] Ginibre, Jean, Velo, Giorgio On a class of nonlinear Schrödinger equations with nonlocal interaction Math. Z. 1980 109 136

[13] Ginibre, J., Velo, G. Scattering theory in the energy space for a class of nonlinear Schrödinger equations J. Math. Pures Appl. (9) 1985 363 401

[14] Hepp, Klaus The classical limit for quantum mechanical correlation functions Comm. Math. Phys. 1974 265 277

[15] Lieb, Elliott H., Seiringer, Robert, Solovej, Jan Philip, Yngvason, Jakob The mathematics of the Bose gas and its condensation 2005

[16] Kato, Tosio On nonlinear Schrödinger equations Ann. Inst. H. Poincaré Phys. Théor. 1987 113 129

[17] Klainerman, Sergiu, Machedon, Matei On the uniqueness of solutions to the Gross-Pitaevskii hierarchy Comm. Math. Phys. 2008 169 185

[18] Reed, Michael, Simon, Barry Methods of modern mathematical physics. III 1979

[19] Rudin, Walter Functional analysis 1973

[20] Spohn, Herbert Kinetic equations from Hamiltonian dynamics: Markovian limits Rev. Modern Phys. 1980 569 615

[21] Strauss, Walter A. Nonlinear scattering theory at low energy J. Functional Analysis 1981 110 133

[22] Yajima, Kenji The 𝑊^{𝑘,𝑝}-continuity of wave operators for Schrödinger operators J. Math. Soc. Japan 1995 551 581

[23] Yajima, Kenji The 𝑊^{𝑘,𝑝}-continuity of wave operators for Schrödinger operators Proc. Japan Acad. Ser. A Math. Sci. 1993 94 98

Cité par Sources :