The speed of propagation for KPP type problems. II: General domains
Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 1-34

Voir la notice de l'article provenant de la source American Mathematical Society

This paper is devoted to nonlinear propagation phenomena in general unbounded domains of $\mathbb {R}^N$, for reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov (KPP) type nonlinearities. This article is the second in a series of two and it is the follow-up of the paper The speed of propagation for KPP type problems. I - Periodic framework, by the authors, which dealt which the case of periodic domains. This paper is concerned with general domains, and we give various definitions of the spreading speeds at large times for solutions with compactly supported initial data. We study the relationships between these new notions and analyze their dependence on the geometry of the domain and on the initial condition. Some a priori bounds are proved for large classes of domains. The case of exterior domains is also discussed in detail. Lastly, some domains which are very thin at infinity and for which the spreading speeds are infinite are exhibited; the construction is based on some new heat kernel estimates in such domains.
DOI : 10.1090/S0894-0347-09-00633-X

Berestycki, Henri 1 ; Hamel, François 2 ; Nadirashvili, Nikolai 3

1 EHESS, Centre d’Analyse et Mathématique Sociales, 54 Boulevard Raspail, F-75006 Paris, France
2 Université Aix-Marseille III, Laboratoire d’Analyse, Topologie, Probabilités, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France
3 CNRS, Laboratoire d’Analyse, Topologie, Probabilités, CMI, 39 rue F. Joliot-Curie, F-13453 Marseille Cedex 13, France
@article{10_1090_S0894_0347_09_00633_X,
     author = {Berestycki, Henri and Hamel, Fran\~A{\textsection}ois and Nadirashvili, Nikolai},
     title = {The speed of propagation for {KPP} type problems. {II:} {General} domains},
     journal = {Journal of the American Mathematical Society},
     pages = {1--34},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2010},
     doi = {10.1090/S0894-0347-09-00633-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00633-X/}
}
TY  - JOUR
AU  - Berestycki, Henri
AU  - Hamel, François
AU  - Nadirashvili, Nikolai
TI  - The speed of propagation for KPP type problems. II: General domains
JO  - Journal of the American Mathematical Society
PY  - 2010
SP  - 1
EP  - 34
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00633-X/
DO  - 10.1090/S0894-0347-09-00633-X
ID  - 10_1090_S0894_0347_09_00633_X
ER  - 
%0 Journal Article
%A Berestycki, Henri
%A Hamel, François
%A Nadirashvili, Nikolai
%T The speed of propagation for KPP type problems. II: General domains
%J Journal of the American Mathematical Society
%D 2010
%P 1-34
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00633-X/
%R 10.1090/S0894-0347-09-00633-X
%F 10_1090_S0894_0347_09_00633_X
Berestycki, Henri; Hamel, François; Nadirashvili, Nikolai. The speed of propagation for KPP type problems. II: General domains. Journal of the American Mathematical Society, Tome 23 (2010) no. 1, pp. 1-34. doi: 10.1090/S0894-0347-09-00633-X

[1] Aronson, D. G., Weinberger, H. F. Multidimensional nonlinear diffusion arising in population genetics Adv. in Math. 1978 33 76

[2] Berestycki, Henri, Hamel, Franã§Ois Front propagation in periodic excitable media Comm. Pure Appl. Math. 2002 949 1032

[3] Berestycki, Henri, Hamel, Franã§Ois Generalized travelling waves for reaction-diffusion equations 2007 101 123

[4] Berestycki, Henri, Hamel, Franã§Ois, Nadirashvili, Nikolai Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena Comm. Math. Phys. 2005 451 480

[5] Berestycki, Henri, Hamel, Franã§Ois, Nadirashvili, Nikolai The speed of propagation for KPP type problems. I. Periodic framework J. Eur. Math. Soc. (JEMS) 2005 173 213

[6] Berestycki, Henri, Nirenberg, Louis Travelling fronts in cylinders Ann. Inst. H. Poincaré C Anal. Non Linéaire 1992 497 572

[7] Constantin, Peter, Kiselev, Alexander, Oberman, Adam, Ryzhik, Leonid Bulk burning rate in passive-reactive diffusion Arch. Ration. Mech. Anal. 2000 53 91

[8] Davies, E. B. Heat kernels and spectral theory 1989

[9] Fife, Paul C., Mcleod, J. B. The approach of solutions of nonlinear diffusion equations to travelling front solutions Arch. Rational Mech. Anal. 1977 335 361

[10] Freidlin, Mark I. On wavefront propagation in periodic media 1984 147 166

[11] Gertner, Ju., Freä­Dlin, M. I. The propagation of concentration waves in periodic and random media Dokl. Akad. Nauk SSSR 1979 521 525

[12] Gallay, Th. Local stability of critical fronts in nonlinear parabolic partial differential equations Nonlinearity 1994 741 764

[13] Grigor′Yan, Alexander Gaussian upper bounds for the heat kernel on arbitrary manifolds J. Differential Geom. 1997 33 52

[14] Gruber, Manfred Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants Math. Z. 1984 23 43

[15] Hadeler, K. P., Rothe, F. Travelling fronts in nonlinear diffusion equations J. Math. Biol. 1975 251 263

[16] Hamel, Franã§Ois Formules min-max pour les vitesses d’ondes progressives multidimensionnelles Ann. Fac. Sci. Toulouse Math. (6) 1999 259 280

[17] Hamel, Franã§Ois Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity J. Math. Pures Appl. (9) 2008 355 399

[18] Heinze, Steffen Diffusion-advection in cellular flows with large Peclet numbers Arch. Ration. Mech. Anal. 2003 329 342

[19] Heinze, S., Papanicolaou, G., Stevens, A. Variational principles for propagation speeds in inhomogeneous media SIAM J. Appl. Math. 2001 129 148

[20] Hudson, W., Zinner, B. Existence of traveling waves for reaction diffusion equations of Fisher type in periodic media 1995 187 199

[21] Jones, Christopher K. R. T. Spherically symmetric solutions of a reaction-diffusion equation J. Differential Equations 1983 142 169

[22] Kanel′, Ja. I. Stabilization of the solutions of the equations of combustion theory with finite initial functions Mat. Sb. (N.S.) 1964 398 413

[23] Kiselev, Alexander, Ryzhik, Leonid Enhancement of the traveling front speeds in reaction-diffusion equations with advection Ann. Inst. H. Poincaré C Anal. Non Linéaire 2001 309 358

[24] Krylov, N. V., Safonov, M. V. A property of the solutions of parabolic equations with measurable coefficients Izv. Akad. Nauk SSSR Ser. Mat. 1980

[25] Lieberman, Gary M. Second order parabolic differential equations 1996

[26] Lui, Roger Biological growth and spread modeled by systems of recursions. I. Mathematical theory Math. Biosci. 1989 269 295

[27] Majda, Andrew J., Souganidis, Panagiotis E. Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales Nonlinearity 1994 1 30

[28] Mallordy, Jean-Franã§Ois, Roquejoffre, Jean-Michel A parabolic equation of the KPP type in higher dimensions SIAM J. Math. Anal. 1995 1 20

[29] Roquejoffre, Jean-Michel Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders Ann. Inst. H. Poincaré C Anal. Non Linéaire 1997 499 552

[30] Ryzhik, Lenya, Zlatoå¡, Andrej KPP pulsating front speed-up by flows Commun. Math. Sci. 2007 575 593

[31] Volpert, Aizik I., Volpert, Vitaly A., Volpert, Vladimir A. Traveling wave solutions of parabolic systems 1994

[32] Weinberger, Hans F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat J. Math. Biol. 2002 511 548

[33] Xin, Jack X. Existence of planar flame fronts in convective-diffusive periodic media Arch. Rational Mech. Anal. 1992 205 233

Cité par Sources :