Quantum cohomology of the Hilbert scheme of points on 𝒜_{𝓃}-resolutions
Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1055-1091

Voir la notice de l'article provenant de la source American Mathematical Society

We determine the two-point invariants of the equivariant quantum cohomology of the Hilbert scheme of points of surface resolutions associated to type $A_{n}$ singularities. The operators encoding these invariants are expressed in terms of the action of the the affine Lie algebra $\widehat {\mathfrak {gl}}(n+1)$ on its basic representation. Assuming a certain nondegeneracy conjecture, these operators determine the full structure of the quantum cohomology ring. A relationship is proven between the quantum cohomology and Gromov-Witten/Donaldson-Thomas theories of $A_{n}\times \mathbf {P}^1$. We close with a discussion of the monodromy properties of the associated quantum differential equation and a generalization to singularities of types $D$ and $E$.
DOI : 10.1090/S0894-0347-09-00632-8

Maulik, Davesh 1 ; Oblomkov, Alexei 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
@article{10_1090_S0894_0347_09_00632_8,
     author = {Maulik, Davesh and Oblomkov, Alexei},
     title = {Quantum cohomology of the {Hilbert} scheme of points on {\dh}’œ_{{\dh}“ƒ}-resolutions},
     journal = {Journal of the American Mathematical Society},
     pages = {1055--1091},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00632-8},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00632-8/}
}
TY  - JOUR
AU  - Maulik, Davesh
AU  - Oblomkov, Alexei
TI  - Quantum cohomology of the Hilbert scheme of points on 𝒜_{𝓃}-resolutions
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 1055
EP  - 1091
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00632-8/
DO  - 10.1090/S0894-0347-09-00632-8
ID  - 10_1090_S0894_0347_09_00632_8
ER  - 
%0 Journal Article
%A Maulik, Davesh
%A Oblomkov, Alexei
%T Quantum cohomology of the Hilbert scheme of points on 𝒜_{𝓃}-resolutions
%J Journal of the American Mathematical Society
%D 2009
%P 1055-1091
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00632-8/
%R 10.1090/S0894-0347-09-00632-8
%F 10_1090_S0894_0347_09_00632_8
Maulik, Davesh; Oblomkov, Alexei. Quantum cohomology of the Hilbert scheme of points on 𝒜_{𝓃}-resolutions. Journal of the American Mathematical Society, Tome 22 (2009) no. 4, pp. 1055-1091. doi: 10.1090/S0894-0347-09-00632-8

[1] Borel, A., Grivel, P.-P., Kaup, B., Haefliger, A., Malgrange, B., Ehlers, F. Algebraic 𝐷-modules 1987

[2] Bryan, Jim, Katz, Sheldon, Leung, Naichung Conan Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds J. Algebraic Geom. 2001 549 568

[3] Bryan, Jim, Pandharipande, Rahul The local Gromov-Witten theory of curves J. Amer. Math. Soc. 2008 101 136

[4] Graber, T., Pandharipande, R. Localization of virtual classes Invent. Math. 1999 487 518

[5] Grojnowski, I. Instantons and affine algebras. I. The Hilbert scheme and vertex operators Math. Res. Lett. 1996 275 291

[6] Kato, Tosio Perturbation theory for linear operators 1995

[7] Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562

[8] Lehn, Manfred, Sorger, Christoph The cup product of Hilbert schemes for 𝐾3 surfaces Invent. Math. 2003 305 329

[9] Li, Wei-Ping, Qin, Zhenbo, Wang, Weiqiang The cohomology rings of Hilbert schemes via Jack polynomials 2004 249 258

[10] Manetti, Marco Lie description of higher obstructions to deforming submanifolds Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2007 631 659

[11] Nakajima, Hiraku Heisenberg algebra and Hilbert schemes of points on projective surfaces Ann. of Math. (2) 1997 379 388

[12] Nakajima, Hiraku Lectures on Hilbert schemes of points on surfaces 1999

[13] Okounkov, A., Pandharipande, R. Gromov-Witten theory, Hurwitz theory, and completed cycles Ann. of Math. (2) 2006 517 560

[14] Qin, Zhenbo, Wang, Weiqiang Hilbert schemes of points on the minimal resolution and soliton equations 2007 435 462

[15] Ran, Ziv Semiregularity, obstructions and deformations of Hodge classes Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1999 809 820

Cité par Sources :