The Fontaine-Mazur conjecture for 𝐺𝐿₂
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 641-690

Voir la notice de l'article provenant de la source American Mathematical Society

We prove new cases of the Fontaine-Mazur conjecture, that a $2$-dimensional $p$-adic representation $\rho$ of $G_{\mathbb {Q}, S}$ which is potentially semi-stable at $p$ with distinct Hodge-Tate weights arises from a twist of a modular eigenform of weight $k\geq 2$. Our approach is via the Breuil-Mézard conjecture, which we prove (many cases of) by combining a global argument with recent results of Colmez and Berger-Breuil on the $p$-adic local Langlands correspondence.
DOI : 10.1090/S0894-0347-09-00628-6

Kisin, Mark 1

1 Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, Illinois 60637
@article{10_1090_S0894_0347_09_00628_6,
     author = {Kisin, Mark},
     title = {The {Fontaine-Mazur} conjecture for {\dh}{\textordmasculine}{\dh}{\textquestiondown}\^a‚‚},
     journal = {Journal of the American Mathematical Society},
     pages = {641--690},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-09-00628-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00628-6/}
}
TY  - JOUR
AU  - Kisin, Mark
TI  - The Fontaine-Mazur conjecture for 𝐺𝐿₂
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 641
EP  - 690
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00628-6/
DO  - 10.1090/S0894-0347-09-00628-6
ID  - 10_1090_S0894_0347_09_00628_6
ER  - 
%0 Journal Article
%A Kisin, Mark
%T The Fontaine-Mazur conjecture for 𝐺𝐿₂
%J Journal of the American Mathematical Society
%D 2009
%P 641-690
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-09-00628-6/
%R 10.1090/S0894-0347-09-00628-6
%F 10_1090_S0894_0347_09_00628_6
Kisin, Mark. The Fontaine-Mazur conjecture for 𝐺𝐿₂. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 641-690. doi: 10.1090/S0894-0347-09-00628-6

[1] Breuil, Christophe, Conrad, Brian, Diamond, Fred, Taylor, Richard On the modularity of elliptic curves over 𝐐: wild 3-adic exercises J. Amer. Math. Soc. 2001 843 939

[2] Barthel, L., Livnã©, R. Irreducible modular representations of 𝐺𝐿₂ of a local field Duke Math. J. 1994 261 292

[3] Berger, Laurent, Li, Hanfeng, Zhu, Hui June Construction of some families of 2-dimensional crystalline representations Math. Ann. 2004 365 377

[4] Breuil, Christophe, Mã©Zard, Ariane Multiplicités modulaires et représentations de 𝐺𝐿₂(𝑍_{𝑝}) et de 𝐺𝑎𝑙(\overline{𝑄}_{𝑝}/𝑄_{𝑝}) en 𝑙 Duke Math. J. 2002 205 310

[5] Bã¶Ckle, Gebhard On the density of modular points in universal deformation spaces Amer. J. Math. 2001 985 1007

[6] Breuil, Christophe Sur quelques représentations modulaires et 𝑝-adiques de 𝐺𝐿₂(𝐐_{𝐩}). I Compositio Math. 2003 165 188

[7] Breuil, Christophe Sur quelques représentations modulaires et 𝑝-adiques de 𝐺𝐿₂(𝐐_{𝐩}). II J. Inst. Math. Jussieu 2003 23 58

[8] Breuil, Christophe Invariant ℒ et série spéciale 𝓅-adique Ann. Sci. École Norm. Sup. (4) 2004 559 610

[9] Carayol, Henri Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet 1994 213 237

[10] Conrad, Brian, Diamond, Fred, Taylor, Richard Modularity of certain potentially Barsotti-Tate Galois representations J. Amer. Math. Soc. 1999 521 567

[11] Darmon, Henri, Diamond, Fred, Taylor, Richard Fermat’s last theorem 1994 1 154

[12] Diamond, Fred, Flach, Matthias, Guo, Li The Tamagawa number conjecture of adjoint motives of modular forms Ann. Sci. École Norm. Sup. (4) 2004 663 727

[13] Diamond, Fred The Taylor-Wiles construction and multiplicity one Invent. Math. 1997 379 391

[14] Diamond, Fred On deformation rings and Hecke rings Ann. of Math. (2) 1996 137 166

[15] Fontaine, Jean-Marc, Laffaille, Guy Construction de représentations 𝑝-adiques Ann. Sci. École Norm. Sup. (4) 1982

[16] Fontaine, Jean-Marc, Mazur, Barry Geometric Galois representations 1995 41 78

[17] Fontaine, Jean-Marc Représentations 𝑝-adiques semi-stables Astérisque 1994 113 184

[18] Grothendieck, A. Éléments de géométrie algébrique. I. Le langage des schémas Inst. Hautes Études Sci. Publ. Math. 1960 228

[19] Gouvãªa, Fernando Q., Mazur, Barry On the density of modular representations 1998 127 142

[20] Greenberg, Ralph, Stevens, Glenn On the conjecture of Mazur, Tate, and Teitelbaum 1994 183 211

[21] Kisin, Mark Potentially semi-stable deformation rings J. Amer. Math. Soc. 2008 513 546

[22] Kisin, Mark Geometric deformations of modular Galois representations Invent. Math. 2004 275 328

[23] Kisin, Mark Overconvergent modular forms and the Fontaine-Mazur conjecture Invent. Math. 2003 373 454

[24] Matsumura, Hideyuki Commutative algebra 1980

[25] Mazur, Barry An introduction to the deformation theory of Galois representations 1997 243 311

[26] Nyssen, Louise Pseudo-représentations Math. Ann. 1996 257 283

[27] Skinner, C. M., Wiles, A. J. Residually reducible representations and modular forms Inst. Hautes Études Sci. Publ. Math. 1999

[28] Skinner, C. M., Wiles, Andrew J. Nearly ordinary deformations of irreducible residual representations Ann. Fac. Sci. Toulouse Math. (6) 2001 185 215

[29] Taylor, Richard Galois representations associated to Siegel modular forms of low weight Duke Math. J. 1991 281 332

[30] Taylor, Richard On the meromorphic continuation of degree two 𝐿-functions Doc. Math. 2006 729 779

[31] Taylor, Richard, Wiles, Andrew Ring-theoretic properties of certain Hecke algebras Ann. of Math. (2) 1995 553 572

[32] Wiles, Andrew Modular elliptic curves and Fermat’s last theorem Ann. of Math. (2) 1995 443 551

Cité par Sources :