Voir la notice de l'article provenant de la source American Mathematical Society
Bjerklöv, Kristian 1 ; Jäger, Tobias 2
@article{10_1090_S0894_0347_08_00627_9,
     author = {Bjerkl\~A{\textparagraph}v, Kristian and J\~A{\textcurrency}ger, Tobias},
     title = {Rotation numbers for quasiperiodically forced circle maps-mode-locking vs. strict monotonicity},
     journal = {Journal of the American Mathematical Society},
     pages = {353--362},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00627-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00627-9/}
}
                      
                      
                    TY - JOUR AU - Bjerklöv, Kristian AU - Jäger, Tobias TI - Rotation numbers for quasiperiodically forced circle maps-mode-locking vs. strict monotonicity JO - Journal of the American Mathematical Society PY - 2009 SP - 353 EP - 362 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00627-9/ DO - 10.1090/S0894-0347-08-00627-9 ID - 10_1090_S0894_0347_08_00627_9 ER -
%0 Journal Article %A Bjerklöv, Kristian %A Jäger, Tobias %T Rotation numbers for quasiperiodically forced circle maps-mode-locking vs. strict monotonicity %J Journal of the American Mathematical Society %D 2009 %P 353-362 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00627-9/ %R 10.1090/S0894-0347-08-00627-9 %F 10_1090_S0894_0347_08_00627_9
Bjerklöv, Kristian; Jäger, Tobias. Rotation numbers for quasiperiodically forced circle maps-mode-locking vs. strict monotonicity. Journal of the American Mathematical Society, Tome 22 (2009) no. 2, pp. 353-362. doi: 10.1090/S0894-0347-08-00627-9
[1] Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local dâun théorème dâArnolâ²d et de Moser sur le tore de dimension 2 Comment. Math. Helv. 1983 453 502
[2] , The Denjoy type of argument for quasiperiodically forced circle diffeomorphisms Ergodic Theory Dynam. Systems 2006 447 465
[3] , Towards a classification for quasiperiodically forced circle homeomorphisms J. London Math. Soc. (2) 2006 727 744
[4] , The rotation number for finite difference operators and its properties Comm. Math. Phys. 1983 415 426
[5] , The rotation number for almost periodic potentials Comm. Math. Phys. 1982 403 438
[6] , , Strange nonchaotic attractors Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2001 291 309
[7] , , Strange non-chaotic attractor in a quasiperiodically forced circle map Phys. D 1995 176 186
[8] , , , The structure of mode-locked regions in quasi-periodically forced circle maps Phys. D 2000 227 243
[9] , , , Rotation numbers for quasi-periodically forced monotone circle maps Dyn. Syst. 2002 1 28
[10] , Introduction to the modern theory of dynamical systems 1995
[11] Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations Ergodic Theory Dynam. Systems 2005 1015 1045
[12] Transitive sets for quasi-periodically forced monotone maps Dyn. Syst. 2003 351 364
[13] Strict ergodicity and transformation of the torus Amer. J. Math. 1961 573 601
[14] Random dynamical systems 1998
[15] On a Floquet theory for almost-periodic, two-dimensional linear systems J. Differential Equations 1980 184 205
Cité par Sources :