The Galton board: Limit theorems and recurrence
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 821-858

Voir la notice de l'article provenant de la source American Mathematical Society

We study a particle moving in $\mathbb {R}^2$ under a constant (external) force and bouncing off a periodic array of convex domains (scatterers); the latter must satisfy a standard ‘finite horizon’ condition to prevent ‘ballistic’ (collision-free) motion. This model is known to physicists as the Galton board (it is also identical to a periodic Lorentz gas). Previous heuristic and experimental studies have suggested that the particle’s speed $v(t)$ should grow as $t^{1/3}$ and its coordinate $x(t)$ as $t^{2/3}$. We prove these conjectures rigorously; we also find limit distributions for the rescaled velocity $t^{-1/3} v(t)$ and position $t^{-2/3} x(t)$. In addition, quite unexpectedly, we discover that the particle’s motion is recurrent. That means that a ball dropped on an idealized Galton board will roll down, but from time to time it should bounce all the way back up (with probability one).
DOI : 10.1090/S0894-0347-08-00626-7

Chernov, N. 1 ; Dolgopyat, D. 2

1 Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294
2 Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
@article{10_1090_S0894_0347_08_00626_7,
     author = {Chernov, N. and Dolgopyat, D.},
     title = {The {Galton} board: {Limit} theorems and recurrence},
     journal = {Journal of the American Mathematical Society},
     pages = {821--858},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00626-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00626-7/}
}
TY  - JOUR
AU  - Chernov, N.
AU  - Dolgopyat, D.
TI  - The Galton board: Limit theorems and recurrence
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 821
EP  - 858
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00626-7/
DO  - 10.1090/S0894-0347-08-00626-7
ID  - 10_1090_S0894_0347_08_00626_7
ER  - 
%0 Journal Article
%A Chernov, N.
%A Dolgopyat, D.
%T The Galton board: Limit theorems and recurrence
%J Journal of the American Mathematical Society
%D 2009
%P 821-858
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00626-7/
%R 10.1090/S0894-0347-08-00626-7
%F 10_1090_S0894_0347_08_00626_7
Chernov, N.; Dolgopyat, D. The Galton board: Limit theorems and recurrence. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 821-858. doi: 10.1090/S0894-0347-08-00626-7

[1] Billingsley, Patrick Probability and measure 1995

[2] Bunimovich, L. A., Sinaä­, Ya. G. Statistical properties of Lorentz gas with periodic configuration of scatterers Comm. Math. Phys. 1980/81 479 497

[3] Bunimovich, L. A., Sinaä­, Ya. G., Chernov, N. I. Statistical properties of two-dimensional hyperbolic billiards Uspekhi Mat. Nauk 1991

[4] Chernov, N. Decay of correlations and dispersing billiards J. Statist. Phys. 1999 513 556

[5] Chernov, N. I. Sinai billiards under small external forces Ann. Henri Poincaré 2001 197 236

[6] Chernov, Nikolai, Dolgopyat, Dmitry Hyperbolic billiards and statistical physics 2006 1679 1704

[7] Chernov, N. I., Eyink, G. L., Lebowitz, J. L., Sinaä­, Ya. G. Steady-state electrical conduction in the periodic Lorentz gas Comm. Math. Phys. 1993 569 601

[8] Chernov, Nikolai, Markarian, Roberto Chaotic billiards 2006

[9] Dolgopyat, Dmitry On differentiability of SRB states for partially hyperbolic systems Invent. Math. 2004 389 449

[10] Dolgopyat, Dmitry Limit theorems for partially hyperbolic systems Trans. Amer. Math. Soc. 2004 1637 1689

[11] Dolgopyat, Dmitry Averaging and invariant measures Mosc. Math. J. 2005

[12] Dolgopyat, Dmitry Bouncing balls in non-linear potentials Discrete Contin. Dyn. Syst. 2008 165 182

[13] Dolgopyat, Dmitry, Szã¡Sz, Domokos, Varjãº, Tamã¡S Recurrence properties of planar Lorentz process Duke Math. J. 2008 241 281

[14] Durrett, Richard Probability: theory and examples 1996

[15] Kozlov, V. V., Mitrofanova, M. Yu. Galton board Regul. Chaotic Dyn. 2003 431 439

[16] Littlewood, J. E. On the problem of 𝑛 bodies Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 143 151

[17] Lue, Arthur, Brenner, Howard Phase flow and statistical structure of Galton-board systems Phys. Rev. E (3) 1993 3128 3144

[18] Moran, Bill, Hoover, William G., Bestiale, Stronzo Diffusion in a periodic Lorentz gas J. Statist. Phys. 1987 709 726

[19] ØKsendal, Bernt Stochastic differential equations 2003

[20] Ravishankar, K., Triolo, L. Diffusive limit of the Lorentz model with a uniform field starting from the Markov approximation Markov Process. Related Fields 1999 385 421

[21] Revuz, Daniel, Yor, Marc Continuous martingales and Brownian motion 1999

[22] Sinaä­, Ja. G. Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards Uspehi Mat. Nauk 1970 141 192

[23] Young, Lai-Sang Statistical properties of dynamical systems with some hyperbolicity Ann. of Math. (2) 1998 585 650

[24] Zaslavsky, G. M. Chaos in dynamic systems 1985

Cité par Sources :