Voir la notice de l'article provenant de la source American Mathematical Society
Chernov, N. 1 ; Dolgopyat, D. 2
@article{10_1090_S0894_0347_08_00626_7,
author = {Chernov, N. and Dolgopyat, D.},
title = {The {Galton} board: {Limit} theorems and recurrence},
journal = {Journal of the American Mathematical Society},
pages = {821--858},
publisher = {mathdoc},
volume = {22},
number = {3},
year = {2009},
doi = {10.1090/S0894-0347-08-00626-7},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00626-7/}
}
TY - JOUR AU - Chernov, N. AU - Dolgopyat, D. TI - The Galton board: Limit theorems and recurrence JO - Journal of the American Mathematical Society PY - 2009 SP - 821 EP - 858 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00626-7/ DO - 10.1090/S0894-0347-08-00626-7 ID - 10_1090_S0894_0347_08_00626_7 ER -
%0 Journal Article %A Chernov, N. %A Dolgopyat, D. %T The Galton board: Limit theorems and recurrence %J Journal of the American Mathematical Society %D 2009 %P 821-858 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00626-7/ %R 10.1090/S0894-0347-08-00626-7 %F 10_1090_S0894_0347_08_00626_7
Chernov, N.; Dolgopyat, D. The Galton board: Limit theorems and recurrence. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 821-858. doi: 10.1090/S0894-0347-08-00626-7
[1] Probability and measure 1995
[2] , Statistical properties of Lorentz gas with periodic configuration of scatterers Comm. Math. Phys. 1980/81 479 497
[3] , , Statistical properties of two-dimensional hyperbolic billiards Uspekhi Mat. Nauk 1991
[4] Decay of correlations and dispersing billiards J. Statist. Phys. 1999 513 556
[5] Sinai billiards under small external forces Ann. Henri Poincaré 2001 197 236
[6] , Hyperbolic billiards and statistical physics 2006 1679 1704
[7] , , , Steady-state electrical conduction in the periodic Lorentz gas Comm. Math. Phys. 1993 569 601
[8] , Chaotic billiards 2006
[9] On differentiability of SRB states for partially hyperbolic systems Invent. Math. 2004 389 449
[10] Limit theorems for partially hyperbolic systems Trans. Amer. Math. Soc. 2004 1637 1689
[11] Averaging and invariant measures Mosc. Math. J. 2005
[12] Bouncing balls in non-linear potentials Discrete Contin. Dyn. Syst. 2008 165 182
[13] , , Recurrence properties of planar Lorentz process Duke Math. J. 2008 241 281
[14] Probability: theory and examples 1996
[15] , Galton board Regul. Chaotic Dyn. 2003 431 439
[16] On the problem of ð bodies Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 143 151
[17] , Phase flow and statistical structure of Galton-board systems Phys. Rev. E (3) 1993 3128 3144
[18] , , Diffusion in a periodic Lorentz gas J. Statist. Phys. 1987 709 726
[19] Stochastic differential equations 2003
[20] , Diffusive limit of the Lorentz model with a uniform field starting from the Markov approximation Markov Process. Related Fields 1999 385 421
[21] , Continuous martingales and Brownian motion 1999
[22] Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards Uspehi Mat. Nauk 1970 141 192
[23] Statistical properties of dynamical systems with some hyperbolicity Ann. of Math. (2) 1998 585 650
[24] Chaos in dynamic systems 1985
Cité par Sources :