The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces
Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 691-737

Voir la notice de l'article provenant de la source American Mathematical Society

We compute the reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces. As a consequence, we confirm the 1993 Bershadsky-Cecotti-Ooguri-Vafa (BCOV) prediction for the standard genus 1 GW-invariants of a quintic threefold. We combine constructions from a series of previous papers with the classical localization theorem to relate the reduced genus 1 invariants of a CY-hypersurface to previously computed integrals on moduli spaces of stable genus 0 maps into projective space. The resulting, rather unwieldy, expressions for a genus 1 equivariant generating function simplify drastically, using a regularity property of a genus 0 equivariant generating function in half of the cases. Finally, by disregarding terms that cannot effect the non-equivariant part of the former, we relate the answer to an explicit hypergeometric series in a simple way. The approach described in this paper is systematic. It is directly applicable to computing reduced genus 1 GW-invariants of other complete intersections and should apply to higher-genus localization computations.
DOI : 10.1090/S0894-0347-08-00625-5

Zinger, Aleksey 1

1 Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794-3651
@article{10_1090_S0894_0347_08_00625_5,
     author = {Zinger, Aleksey},
     title = {The reduced genus 1 {Gromov-Witten} invariants of {Calabi-Yau} hypersurfaces},
     journal = {Journal of the American Mathematical Society},
     pages = {691--737},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2009},
     doi = {10.1090/S0894-0347-08-00625-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00625-5/}
}
TY  - JOUR
AU  - Zinger, Aleksey
TI  - The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces
JO  - Journal of the American Mathematical Society
PY  - 2009
SP  - 691
EP  - 737
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00625-5/
DO  - 10.1090/S0894-0347-08-00625-5
ID  - 10_1090_S0894_0347_08_00625_5
ER  - 
%0 Journal Article
%A Zinger, Aleksey
%T The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces
%J Journal of the American Mathematical Society
%D 2009
%P 691-737
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-08-00625-5/
%R 10.1090/S0894-0347-08-00625-5
%F 10_1090_S0894_0347_08_00625_5
Zinger, Aleksey. The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces. Journal of the American Mathematical Society, Tome 22 (2009) no. 3, pp. 691-737. doi: 10.1090/S0894-0347-08-00625-5

[1] Atiyah, M. F., Bott, R. The moment map and equivariant cohomology Topology 1984 1 28

[2] Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C. Holomorphic anomalies in topological field theories Nuclear Phys. B 1993 279 304

[3] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[4] Bertram, Aaron Another way to enumerate rational curves with torus actions Invent. Math. 2000 487 512

[5] Candelas, Philip, De La Ossa, Xenia C., Green, Paul S., Parkes, Linda A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory Nuclear Phys. B 1991 21 74

[6] Cox, David A., Katz, Sheldon Mirror symmetry and algebraic geometry 1999

[7] Fukaya, Kenji, Ono, Kaoru Arnold conjecture and Gromov-Witten invariant Topology 1999 933 1048

[8] Gathmann, Andreas Absolute and relative Gromov-Witten invariants of very ample hypersurfaces Duke Math. J. 2002 171 203

[9] Givental, Alexander The mirror formula for quintic threefolds 1999 49 62

[10] Kontsevich, M., Manin, Yu. Gromov-Witten classes, quantum cohomology, and enumerative geometry Comm. Math. Phys. 1994 525 562

[11] Lee, Y.-P. Quantum Lefschetz hyperplane theorem Invent. Math. 2001 121 149

[12] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds 1998 47 83

[13] Lian, Bong H., Liu, Kefeng, Yau, Shing-Tung Mirror principle. I Asian J. Math. 1997 729 763

[14] Hori, Kentaro, Katz, Sheldon, Klemm, Albrecht, Pandharipande, Rahul, Thomas, Richard, Vafa, Cumrun, Vakil, Ravi, Zaslow, Eric Mirror symmetry 2003

[15] Ruan, Yongbin, Tian, Gang A mathematical theory of quantum cohomology J. Differential Geom. 1995 259 367

[16] Vakil, Ravi, Zinger, Aleksey A desingularization of the main component of the moduli space of genus-one stable maps into ℙⁿ Geom. Topol. 2008 1 95

[17] Zinger, Aleksey On the structure of certain natural cones over moduli spaces of genus-one holomorphic maps Adv. Math. 2007 878 933

[18] Zinger, Aleksey Intersections of tautological classes on blowups of moduli spaces of genus-1 curves Michigan Math. J. 2007 535 560

[19] Zinger, Aleksey Standard versus reduced genus-one Gromov-Witten invariants Geom. Topol. 2008 1203 1241

Cité par Sources :